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(ABSTRACT)

Modern durability and damage tolerance predictions for composite material systems rely on accurate

estimates of the local stress and material states for each of the constituents, as well as the manner in which

the constituents interact. In this work, an number of approaches to estimating the stress states and

interactions are developed. First, an elasticity solution is presented for the problem of a penny-shaped

crack in an N-phase composite material system opened by a prescribed normal pressure. The stress state

around such a crack is then used to estimate the stress concentrations due to adjacent fiber fractures in a

composite materials. The resulting stress concentrations are then used to estimate the tensile strength of

the composite. The predicted results are compared with experimental values.

In addition, a cumulative damage model for fatigue is presented. Modifications to the model are made to

include the effects of variable amplitude loading. These modifications are based upon the use of

remaining strength as a damage metric and the definition of an equivalent generalized time. The model is

initially validated using results from the literature. Also, experimental data from APC-2 laminates and

IM7/K3B laminates are used in the model. The use of such data for notched laminates requires the use of

an effective hole size, which is calculated based upon strain distribution measurements. Measured

remaining strengths after fatigue loading are compared with the predicted values for specimens fatigued at

room temperature and 350°F (177°C).
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1. Introduction and Literature Review

Modern durability and damage tolerance predictions for composite material systems rely on accurate

estimates of the local stress and material states for each of the constituents, as well as the manner in which

the constituents interact. It is possible to make estimates of the local stress state, even in the presence of

complex damage modes, using either closed-form analyses or detailed numerical methods. However, the

manner in which the evolution of the material states during component life contributes to the final failure

is less well understood. In particular, there are many different damage modes that may develop and

interact before a final failure occurs. These damage modes make it possible to design components from

composite materials that are extremely damage tolerant. To use this damage tolerance to its fullest, we

must have some method to predict the stiffness, strength, and life of these materials in variable

environmental conditions. For engineering applications, the ability to evaluate the evolution of fiber-

controlled properties under various long-term thermo-mechanical loading conditions is of particular

importance. Under these loading conditions, it is necessary to have accurate depictions of changes in

stress state due to damage development. Damage development may include matrix cracking, fiber

fracture, fiber-matrix separation, delamination, and environmental degradation. A coherent rationale for

combining these effects to evaluate the material state at any point during the service life is required.

In order to approach the problem of fiber-controlled failure of composite materials, there are a number of

methods that can be employed. These include empirical methods, laminate-level models, and

micromechanical models. Each of these methods has its own particular advantages and disadvantages.

The empirical methods typically require a great deal of experimental work and are reliable only within

ranges for which data are available. Also, when parameters such as the laminate stacking sequence are

changed, additional experimental characterization is required. Laminate-level models have the advantage

of being sensitive to stacking sequence variations, although they lack sensitivity to fiber-matrix interphase
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variationswhichhavebeenshown[1-4]tohaveagreatinfluenceoncompositestrengthanddurability.

Micromechanicalmodelshavetheadvantageofbeingsensitivetovariationsatthefiber/matrix/interphase

level.However,manyofthequantitiesnecessaryforthesemodelsmaybedifficult(ornearlyimpossible)

tomeasure.It istheauthor'sopinionthatthebestapproachtomodelingthefiber-controlledbehaviorisa

"building-block"approachin whichlaminate-levelmodelsareableto makeuseof informationfrom

micromechanicalmodelsofthecompositebehavior,butnottotheexclusionofknowndata.Forexample,

itwouldbeofquestionablebenefittouseamicromechanicalmodelfortensilestrengthwhenthatstrength

hasalreadybeencharacterizedexperimentally.In casesin whichsomedataaremissing,however,the

micromechanicalmodelsareinvaluable.Inordertounderstandhowsuchabuilding-blockapproachmay

beachieved,it isusefultoreviewpreviousworkthathasbeendonein theareaoffiber-controlledbehavior

ofcompositematerials.Thisreviewwill beginwithmicromechanicalmodelingandwill thenconsider

theestimationofresidualstrengthduringfatigueandfatiguelife forthecaseoflaminatesdominatedby

thefiberbehavior.Astheareaof compression-controlledmicromechanicalmodelinghasrecentlybeen

consideredbyLesko[5], thepresentreviewof micromechanicalmodelingwill consideronlytensile

strength.

1.1 Micromechanical Modeling of Tensile Strength

For continuous fiber reinforced polymeric composite materials, the tensile strength is controlled by the

stress distributions surrounding fiber fractures (Gao, et al. [6]). In particular, the stress concentrations in

fibers adjacent to the fractured ones and the distance over which the perturbed stress field acts (the

ineffective length) are required for tensile strength predictions such as that presented by Batdorf [7]. The

understanding of these stress concentrations and the resulting ineffective lengths may be better achieved

by reviewing some of the previous work which has been done in the area of "penny-shaped" cracks

(circular disk cracks), as a simple fiber fracture falls into this class of problems.
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Sneddon [8] was among the first to consider the penny-shaped crack problem. His analysis concerned a

crack created in the interior of an infinite elastic medium occupying the circle r2 = x 2 + 32 = c2 in the

plane z = 0. Sneddon was able to obtain exact expressions for the stresses at any point in the body. In

addition, he applied a Griffith-type criterion for the condition of crack growth.

Collins [9] also considered the case of a penny-shaped crack subjected to shear as well as normal loading.

His approach was based on the use of two harmonic potential functions to represent the stresses and

displacements. To illustrate the solution procedure, Collins determined the solution for four different

penny-shaped crack problems:

(i) the opening of the crack by a point force acting at an interior point of the

infinite solid

(ii) two parallel cracks in an infinite solid

(iii) an infinite row of parallel cracks in an infinite solid

(iv) and a crack in a thick plate with stress-free faces.

In all cases except for (i), approximate solutions to the resulting integral equations were presented.

Collins presented expressions for the work of the crack and the maximum displacement of the crack faces.

Keer [10] was the first to consider non-symmetrical loading of the penny-shaped crack. He used

cylindrical polar coordinates (r, O, z) where the crack, with radius a, is given by z = 0, 0 < r _<a. The

crack was assumed to be opened by an arbitrary distribution of normal pressure. The problems were

solved using a stress function technique similar to that employed by Green and Zerna [11]. Having

obtained the solution for the problem of a crack in an infinite medium being opened by a non-symmetrical

normal pressure, Keer next considered two other problems: a crack symmetrically loaded within a stress-

free, thick elastic plate and a crack embedded in a beam exposed to pure bending. In the case of the crack
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in a thick plate, Keer derived a Fredholm integral equation of the second kind for the solution. The

resulting equation must be solved by iteration or numerically.

Smith et al. [12] developed an expression for the stress intensity factor of a penny-shaped crack in a

infinite elastic solid subjected to non-axisymmetric normal loading. Their analysis began as Keer [10] did

by assuming that, in the absence of body forces, the complete solution for a restricted class of problems in

which the shear stresses on the plane z = 0 can be represented by a single harmonic function, ¢_(r, O, z).

They also expressed the loading on the crack surface as a Fourier series. By considering the general

solution in the vicinity of the crack tip, the authors developed an expression for the stress intensity factor

for the opening mode of fracture. Additionally, they showed that the state of stress becomes that of plane

strain at the tip of a penny-shaped crack for any non-axisymmetric continuous distribution of loading on

the crack surface. To illustrate the applicability of their results, Smith et al. considered two particular

cases: that of two concentrated forces at equal radial distances on the crack surface and that of a penny-

shaped crack in a large beam subjected to pure bending.

Guidera and Lardner [13] used the Somigliana formula from dislocation theory to solve the problem of a

crack whose deformation is caused by the action of prescribed tractions on the crack surface. They

obtained expressions for the stress intensity factors for two cases of loading of the crack plane, normal and

shear.

Lardner and Tupholme [14] considered much the same problem as that considered by Guidera and

Lardner--only for a hexagonal crystal. By appropriately replacing certain isotropic constants by the

appropriate elastic constants for the hexagonal material, they were able to obtain the stress intensity

factors for a penny-shaped crack in a hexagonal medium. The resulting forms of the integral equations

for the hexagonal medium are the same as those solved by Guidera and Lardner for the isotropic case.
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Lardner and Tupholme arrived at the stress intensity factors by direct substitution into the previous

results. Using the results from the previous study by Guidera and Lardner for a constant unidirectional

shear traction, Lardner and Tupholme studied the effect of the anisotropy on the distribution of stress in

the vicinity of the crack.

Each of the above solutions considered the radial dimension of the body (the direction perpendicular to the

crack) to be infinite. Sneddon and Tait [15] considered the case of a very long (taken to be infinite)

cylinder containing a crack with the center of the crack lying on the axis of the cylinder with the plane of

the crack perpendicular to that axis. They assumed that the cylindrical surface is free from shear and is

supported in such a way that the radial component of the displacement vector vanishes on the surface.

Such a situation would arise physically if the elastic cylinder were resting in a hollow cylinder in a rigid

body of exactly the same radius, and if the cylinder were then deformed by the application of a known

pressure to the surfaces of the crack. Sneddon and Tait presented the derivation of two solutions to the

problem: one based on an integral-type solution and the other based on a series-type solution. The second

is simpler, although it cannot be generalized to cover the case in which the cylinder surface is free from

stress. Sneddon and Tait obtained an approximate solution for the case in which the crack is opened by a

constant pressure.

The problems considered previously have dealt with a penny shaped crack in a homogenous material.

Dhaliwal et al. [16] considered the state of stress in a long elastic cylinder with a concentric penny-shaped

crack, bonded to an infinite elastic medium. They assumed the crack to be opened by an internal pressure

and that the plane of the crack was perpendicular to the axis of the cylinder, and allowed the elastic

constants of the cylinder and the semi-infinite medium to be different. They then reduced the problem to

the solution of a Fredholm integral equation of the second kind and obtained closed-form expressions for

the stress intensity factor and the crack energy.
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Cox[17]wasoneof thefirst to studythestressredistributionwhichoccursin thevicinityof a fiber

fracturein aunidirectionalcompositematerial.Rosen[18]laterpresentedannearlyidenticalmodel.

Rosen'sanalysis(ashearlagmodel)assumedthatthefiberssupportonlytensileloading,thematrix

supports(andtransmits)onlyshearloading,andthatthesheartransferbetweenthebrokenfiberand

adjacentfibersis limitedtothematrixbetweenthosefibers.Thisanalysissuggeststhatthestressterms

increaseexponentiallyasaxialdistanceincreasesalongthefracturedfiber.Inaddition,bymakinguseof

anefficiencyparameterwhichrelatesthestressesin thevicinityofthefiberfracturetothosefarremoved,

it waspossibletopredictanineffective length--the axial distance over which the stress field is perturbed.

Whitney and Drzal [19] considered the case of a single fractured fiber embedded in an infinite matrix.

Their analysis extended the shear lag concepts to include axial loading in the matrix and shearing stresses

in the fractured fiber. By using the equilibrium equations in conjunction with constitutive relations, and

an assumed functional dependence of the stresses on the radial and axial coordinates, they were able to

formulate an approximate solution to the ineffective length problem. This solution does not satisfy all of

the compatibility conditions. The ineffective lengths calculated using this analysis were compared with

experimentally determined values using a single fiber fracture test for on composite systems to validate the

micromechanical model.

Hedgepeth and Van Dyke [20] considered the stress concentrations on neighboring fibers due to single

and multiple adjacent fiber fractures. Their analysis used an influence function approach along with shear

lag concepts. Results were presented for both three-dimensional square and hexagonal arrays where

specified fibers were broken, and for the stress concentration/'actor in a fiber adjacent to a broken fiber in

a two-dimensional array where the shear stress in the matrix is restricted by a limiting stress value. Due

to the inherent shear lag assumptions, however, the model does not include the effects of the fiber and
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matrix stiffness values or fiber volume fraction. Therefore, it is applicable to high fiber modulus, low

matrix modulus, high fiber volume fraction systems.

Carman et al. [21] attempted to include the effect of fiber volume fraction, material properties, crack size,

and fiber eccentricity on the resulting stress concentrations in the vicinity of a fiber fracture. Their

analysis represented the fibers adjacent to a fractured fiber by a ring of material. Using an assumed

functional dependence of strains in the vicinity of the fractured fiber in conjunction with a mechanics of

materials approach and elasticity concepts, an approximate stress field was developed in each of the

constituent materials. They presented numerical results for stress concentrations with variables such as

fiber volume fraction, stiffness values, crack size, and fiber eccentricity. In addition, the analytical

predictions were compared with direct experimental measurements obtained from a macro-model

composite system. The results were shown to be in good agreement with the analytical predictions.

Fajardo [22] performed an experimental study of fiber fracture in a glass/epoxy composite using a macro-

model composite. In particular, the effects of fiber volume fraction and crack size on stress concentration

and ineffective length due to a single fiber fracture were studied. The experimental results were compared

with theoretical predictions made using the annular ring model proposed by Carman et al. [21] and the

shear lag model [18]. It was shown that the annular ring model provided closer agreement with the

experimental results, although both models still over predicted the ineffective length.

Case et al. [23] expanded on the axisymmetric model of Carman et al. [21] and included the effects of

multiple fiber fractures by using a linear superposition technique. In addition, a series solution model was

used in conjunction with the assumed radial decay from Carman et al. [21] to obtain predictions of stress

concentration as a function of axial distance from a broken fiber. These analytical results were compared

to experimental measurements from a model composite system and were found to be in good agreement
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forthecasein whichonlya fiberfracturewaspresent.However,pooragreementwasachievedfor the

case in which a matrix crack, as well as a broken fiber, was present.

Recently, Kaw and Jadhav [24] considered the axisymmetric response of a cracked fiber in a matrix. The

problem considered was almost identical to that considered by Dhaliwal et al. [I0] with two exceptions:

the matrix was taken to be of finite radial dimension, and the bonding between the fiber and the matrix

was not taken to be perfect. Rather, the interface shear stress was assumed to be proportional to the

difference between the axial displacement in the fiber and the axial displacement in the matrix. The

problem was reduced to the solution of a Cauchy singular integral equation which was solved numerically.

This analysis has the advantage of allowing researchers to consider the effects of imperfect bonding on the

stress state surrounding a broken fiber. However, it is somewhat limited in that the effect of this imperfect

bonding on the adjacent fibers cannot be analyzed.

McCartney [25] presented an approximate analysis of a more general class of fracture problems than those

previously considered. This solution was based upon the assumption that the shear stress, o=, in each of

the constituents can be expressed as a product of an unknown function of z, and a linear variation in the

radial direction. By making algebraic simplifications, he reduced the problem to the solution of a system

of fourth order simultaneous ordinary differential equations which were solved numerically. The resulting

stress state was compared with finite element models with good agreement.

Another approximate approach has been presented by Pagano [26], who used Reissner's variational

theorem in conjunction with an equilibrium stress field in which the radial dependence was assumed to

study the axisymmetric response of a concentric cylindrical body. The interfaces between adjacent

cylinders were permitted to be either continuous or subjected to mixed boundary conditions. The external

Introduction and Literature Review 8



surfaces were also permitted to be exposed to mixed boundary conditions. An example thermal stress

problem was compared with an elasticity solution to examine details of the model accuracy.

The ultimate goal in modeling the stress concentrations and ineffective length surrounding a fiber fracture

in the present context is to obtain accurate lamina level tensile strength predictions. Harlow and Phoenix

[27] used a statistical analysis in conjunction with an assumed load sharing rule for a single ply tape to

predict composite strength for this idealized problem. They considered both the case of the usual Weibull

distribution and what they considered to be a more realistic double version which has the effect of putting

an upper bound on fiber strength. They found that for typical cases the use of the double Weibull

distribution for fiber strength does not affect the behavior of the probability distribution for the strength of

composite materials and therefore its use may not be justified. The difficulty in calculating the probability

distribution for the two-dimensional case suggests that it would be extremely difficult to extend the

analysis to include three-dimensional effects.

Batdorf [7] has presented a somewhat simpler approach to the tensile strength of composite materials.

The analysis is based on that proposed by Harlow and Phoenix [27], but through many simplifications the

analysis may be used to predict the tensile strength of three-dimensional composite materials. The

analysis uses theoretically determined stress concentrations and ineffective lengths due to multiple fiber

fractures to estimate the fiber load level at which an instability occurs. This load level corresponds to the

load at which the composite itself experiences catastrophic failure. To study the effects of the

simplifications on the predicted strength, a comparison was made to the results published by Harlow and

Phoenix [27]. It was shown that the failure stresses predicted by both methods differ by only a few

percent, suggesting that the simplifying assumptions did not significantly affect the predictions made by

the model.
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A similar approach to modeling and predicting the tensile strength of polymer composites has been given

by Reifsnider [28]. Rather than using the instability condition suggested by Batdorf, this analysis is based

upon assuming that global composite failure (characterized by unstable fiber fracture) is characterized by

the condition in which all fibers immediately adjacent to a single broken fiber fail due to the stress

concentration. By making an assumption of the functional relationship between the ineffective length and

the stress concentrations, they were able to suggest that an optimum stress concentration (an hence

ineffective length) exists.

Gao et al. [6] conducted a study of strength prediction and optimization of composites. Their analysis

used a modified shear lag approach in conjunction with the statistical analysis of Batdorf [7] to achieve

tensile strength predictions. As part of their shear lag analysis, they showed that there was a direct

relationship between stress concentrations due to fractured fibers and ineffective length. In addition, they

considered the effects of irregular fiber spacing and the ratio of fiber to matrix stiffness values on the

predictions for composite tensile strength. Their analysis also suggests that there may be an optimum

ineffective length which maximizes the tensile strength.

1.2 Estimation of Residual Strength During Fatigue and Fatigue Life

The prediction of fatigue damage and fatigue life for composite materials has been the subject of many

investigations during recent years. Hwong and Han [29] suggested four requirements for a universal

fatigue damage model:

1. It should explain fatigue phenomena at an applied stress level.

2. It should explain fatigue phenomena for an overall applied stress range

a) During a cycle at a high applied stress level the material should be more

damaged than that at a low applied stress level.
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b) If it is true that failure occurs at each maximum applied stress level, then the

final damage (damage just before failure) at a low applied stress level should be larger

than that of a high applied stress level.

It should explain multi-stress level fatigue phenomena.

It is desirable to establish the fatigue damage model without an S-N curve.

An excellent review of work in this area of fatigue life predictions has been given by Liu and Lessard [30].

In this paper, they divided the models used to predict fatigue life into three classes: residual strength

degradation, modulus degradation, and damage tolerance approaches. According to Huston [31 ], most of

the life prediction methods for polymeric composite materials are based on the residual strength

degradation. However, he suggested that theories for fatigue failure based on the reduction of stiffness

have one significant advantage over the remaining strength theories: remaining life can be assessed by

non-destructive techniques. Also, Huston suggested that less testing needs to be conducted for stiffness-

degradation-based models.

One such analysis based upon stiffness degradation has been proposed by Poursartip et al. [32]. In their

analysis, it was assumed that the stiffness reduction could be related in a linear manner to the "damage"

that was present due to fatigue. By making arguments based upon the global stiffness reduction due to

cracks in composite materials, they were able to relate the measured stiffness reduction in a linear fashion

to the damage (for a low concentration of cracks). The damage parameter could then be integrated from

its initial value to some final (critical) value using the experimentally measured stiffness reduction.

Failure was predicted to occur at the point where the damage parameter reached the critical value.

In the residual strength degradation approach, fatigue failure is typically assumed to occur when the

residual strength becomes equal to the applied maximum stress amplitude. Such an approach was used by

Broutman and Sahu [33], who proposed a cumulative damage theory based on a linear strength
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degradationapproachto explainthefatiguedamageof fiberglassreinforcedcomposites.Usingthis

approach,theywereabletomakepredictionsfortheresidualstrengthsoflaminateswhichweresubjected

tohigh-lowstresstestsandoflaminateswhichweresubjectedtolow-highstresstests.Thesepredictions

werecomparedwiththeexperimentallymeasuredresidualstrengths.

HashinandRotem[34]proposedacumulativefatiguedamagetheoryinwhichthedamageduringcyclic

loadingmayberepresentedbytheresiduallifetimeundersubsequentconstantamplitudecycling.The

theorywasbasedontheconceptofdamagecurvefamilieswhicharedefinedin termsofresiduallifetimes

for two-stageloading.Thedamagein twocomponentsdueto twodifferentloadinghistorieswas

consideredtobeequivalentif it gavethesameremaininglifeundersubsequentloadingatthesamestress

level.Theauthorsconsideredproceduresof lifetimepredictionforpiecewiseconstantcycleamplitude

variation(multi-stageloading)aswellasfor thecaseof continuousvariationof cycleamplitudewith

numberof cycles.Forthesecondcase,thesolutionof initialvalueproblemsforfirstordernonlinear

differentialequationswasrequired.TheauthorscomparedtheiranalyticalresultstothatofMiner'srule

for multi-stageloadingprogramsandfoundthereto beconsiderabledifference.In addition,they

comparedtheiranalyticalresultstotheexperimentaldataobtainedonbothsoftandhardsteelswithgood

agreement.

Themodelingapproachespresentedpreviouslydealtwithphenomenologicalrepresentationsoffatiguelife

andresidualstrengthpredictions.Reifsniderandhiscoworkers[35-38]proposeda mechanisticnon-

linearresidualstrengthpredictionbasedonthecriticalelementmodel.In thisapproach,arepresentative

volumewasselectedwhichwastypicalof thematerialin question.Thisrepresentativevolumemay

containdamage,suchasmatrixcracks,delaminations,microbuckles,or fiberfractures,butsomepartofit

stillretainstheabilitytocarryload.It is thefailureofthispartoftherepresentativevolume,theso-called

"criticalelement",whichdeterminesthefractureof theentirerepresentativevolume.Theremaining

strengthof thecriticalelementwascalculatedbyusinga non-lineardamageevolutionequationwhich
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accountsforthechangingstressamplitudein thecriticalelement.Thepredictionsof themodelwere

comparedwithlaboratorydataforpolymericaswellasceramiccompositesystems.

ThegeneralapproachgivenabyReifsnideretal.wasextendedbySubramanianetal. [39]toincludethe

effectsof aninterphaseregiononthetensilefatiguebehaviorofcompositelaminates.Theeffectof this

interphaseregionwasmodeledbytheinclusionof an"efficiency"parameterwhichwastakento bea

measureofdisplacementtransferbetweenthefiberandthematrix.Theeffectofthisefficiencyparameter

onthetensilestrengthwasassessedusingamicromechanicaltensilestrengthmodel.Changesin the

interphasepropertywereusedinconjunctionwithamaximumstraincriteriontodeterminethefatiguelife

ofthelaminate.Theresultswerecomparedwiththeexperimentallymeasuredlives.

Thegoalofthepresentstudyistodevelopandvalidateamethodtopredicttheresidualstrengthandlife

of a polymericcompositecomponentsubjectedto cyclicandsustainedthermomechanicalconditions.

Conditionstobeconsideredincludeelevatedtemperature(inair)andcyclic(fatigue)loadingat various

stresslevels.Asthisarea,in itself,is sobroad,particularemphasiswill begivento fiber-controlled-

tensilefailurein thecontextof thecriticalelementmodel.Theapproachemployedwill beonewhich

incorporatesmicromechanical,ply-level,andlaminate-levelmodeling.Toaccomplishthegoalsof the

proposal,theworkwillundertakeanaturalprogression:

• Micromechanical tensile strength modeling which includes the role of the mechanical

properties of the constituents, the interphase region, as well as the fiber volume fraction.

• Fatigue damage modeling in the context of the critical element model, including initial

validation of the critical element model for laminates with "simple" damage development

patterns using available data from the literature. This will concentrate on residual strength

as well as lifetime prediction.
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• Identification of damage processes and development of modeling techniques for unnotched

and notched laminates at room temperature

• Identification of damage processes and development of modeling techniques for unnotched

and notched laminates at elevated temperature
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2. Strength Prediction in Unidirectional
Composite Materials

In this section, an analytical model is developed which provides an approximate stress state in the region

surrounding a fiber fracture in a unidirectional composite material. The stress state is approximate in that

the adjacent fibers have been smeared together to form a ring, making the resulting problem

axisymmetric. Using an additional smearing technique in conjunction with this approach, it is possible to

determine the stress state in the neighborhood of multiple fiber fractures. This stress state is then be used

in strength prediction models such as that described by Batdorf [7] to arrive at the desired macro-level

strength predictions.

2.1 Basic Equations and Their Solution

The present analysis is an extension of that employed by Dhaliwal et al. [16] with modifications made to

the potential functions to allow the body to include any number of concentric cylinder elements. We begin

by considering the problem of a penny-shaped crack of radius rc in an infinitely long elastic cylinder of

radius r I . This cylinder is surround by N-1 concentric elastic cylinders of radius ri (i=2, N-l), as shown

in Figure 2.1. The crack surface (0 < r < rc) is subjected to a prescribed normal loading. The assumption

of perfect bonding requires continuity of displacements and tractions at each interface (r = r1, r2.... r,v_j).

Since the geometry of the problem is symmetric about the plane z = 0, the problem reduces to a mixed

boundary value problem for the region z > 0, r > 0. By assuming appropriate solutions for the regions of

interest, the problem is reduced to the solution of a Fredholm integral equation of the second kind. This

equation may be solved numerically. Once this solution has been obtained, it may be used to calculate the

stress and displacement components in each of the constituent materials. By using a geometry
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Figure 2.1. Penny-shaped crack surrounded by multiple concentric cylinders having different

elastic constants.
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approximation, it is then possible to use these stresses to determine the stress concentrations in

unidirectional composite materials due to a single fiber fracture.

For the case of axisymmetric loading and boundary conditions, the displacement vector U assumes the

form (u r, O, uz) in a cylindrical coordinate system (r, 0, z). The equations of equilibrium in terms of

displacement are given by

pvu+(_,+p)v(v.u) =o (2.1)

The corresponding stresses are given by

OlUr _ [_ Ur

O'rr(r,z)=('_l'q-2_l)--_-r -t-_tT-b_l

cr_z(r,z) : (Z + 2_t)--_-- + &tr +--._ --J

(aur au_'_
a,_(r,z)= ,Ic&- +---_-j

(2.2)

where _. and bt are Lam6's constants.

Following Dhaliwal et al. [16], we may take the solution of the system of partial differential equations

given by Equation (2.1) in the form of

--_ 82Z + _ + (3 - 4v)qt - r c9_u,(r,z) =(1- 2v) +zo--_ or Or

__ a2 x _ agu(r,z):-2(1-v) +z---_+ -r---_

(2.3)
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wherev isPoisson'sratioandthefunctionsZ,_b,andV satisfy the following relations

3 2 1 3 3 2 )_Tr_+ _ Z =or&_-r

a 1 3 32 "_
-_-7+-_ +-_-rl¢ = o
vr r or oz )

+-r Or---t Oz 2 r 2 V =0

Solution of Equations (2.4) for the regions Ri, 1 < i < N, are taken in the form of

(2.4)

Z(')(r'z) : So -_T F({)Jo(_r) e-_'z d_

_O)(r'z) : So -_ A(_)[l°(_r)c°s(_z)-l]d¢,

IF(')(r'z) : 50 B(¢)I,(¢r)cos(_z)d_

(r, z) • R!

(2.5)

z(il(r, z) = 0

gP(O(r'z) = 50 _[ C(O(¢)K°(_r) + E(')(_)l°(_r)] c°s(_z)d_'
q

_I("(r'z) : Io [D(')(¢)K'(¢r) + G'O(¢)l'(_r)] c°s(_'z)d¢

z(N)(r, Z) = 0

_(m(r,z) = _o°_C(N)(¢)Ko(¢r)cos(_z)d_,

(ff(N)(r'z) = Io D(N)(_)Kl(_r)c°s(_z)d¢

(r,z)• R i,2<i<N-1

(2.6)

(r, z)• R N

(2.7)
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where the superscript i (i = 1, 2...N) denote quantities for the regions Ri and Ji,(_r), li,(_r), and Ki,(_r)

denote Bessel functions of the first kind and modified Bessel functions of the first and second kind,

respectively, of orders j 6/ = 0, 1). From Equations (2.2), (2.3), (2.5), (2.6), and (2.7), we obtain the

following expressions for the stress and displacement components in the regions Ri, i = 1, 2 .... N:

u/')= _[_(2vi- 1 + _)F(_)J,(_r)e-¢_+ {A(_)l,(_r)+ B(_)[4(1- vt)Ii(_r)-_rlo(_r)]}cos(_z)_ _

uz (')= _0°I_(2-2vl + _z)F(_)Jo(_r)e-_Z-{A(_)Io(_r)-_rB(_)Ii(_r)}sin(_z)_

(2.8)

(2.9)

O"rr (1)_- I)/.ll[{(_Z--l)Jo(_r)-_-(1--2Vi-_Z)_rJl(_r)}F(_)e-¢Z

I {A(/_)[It(_r)__rlo(_r)]+ B(_)[(4- 4v, + _2r2)11(/_r)-(3- 2v,)_rlo(/_r)]}cos(_z)]d _
r

(2.10)

O'._z(1)(r, Z)= -2fl, So[ (I + _z)F(_)Jo(_r )e -_ + _{A( _)lo(_:r)- B(_)[ 2v, lo(_r)+ _jrl, (_r)]} cos(_z)]d_

(2.11)

cr (')(r, z)= -2/d, So[/_zF(_)J'(/_r)e -_ + _{A(_)l,(_r) + B(_:)[2(I - v,)l,(_r)- _rlo( _r)]} sin (¢z)]d_

(2.12)

u,(')(r, z) = Ij - C(')( ¢)K, (¢r) + E(°( _)I,( _r) + D(')(4)[ 4(1 - v, )K,( ¢r) + _rKo( _r)]

+G(°(_)[4(I- v,)l,(_r)-_rlo(_r)]}cos(¢z)d _

(2.13)

u_U)(r'z) = So { -C(O(¢)K°(¢r)- E(°(¢)I°(¢r) + D(O(¢)_rKl(¢r) + a(')(¢)¢rI'(¢r)} sin(¢z)d¢

(2.14)
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cr (')(r,z)= -_ IjC(')({)[¢rKo({r)+ K,(_r)]- D(')(¢)[(4 - 4v, + _2r2)Kl({r)+ (3- 2v,){rKo(_r)]

+E(O({)[{rlo({r) - I,({r)]-G(O(_)[(g-4v_ + {2r:)It ({r)- (3- 2v_){rIo(_r)]}cos(_z)d{

ffrz(i)(r,z) = 2/.t iI0_{C(0 (_)K, (_r)- D(i)( 4)[ 2(1 - v i )K, (_r)+ _rKo(_r)]

-E(°(_)I_ (¢r)- G(i)(_)[ 2(1 - v, )I 1(¢r) + Crlo(¢r )]} sin(_z)d_

cr=(°(r,z)=-2_l,I_{C(°({)Ko(_r)+ D(')(_)[2v,Ko(_r)-{rKl(_r)]

+E(')( { )I 1( _r) - G(_'( {)[ 2v_I o ( {r) + {rI I({r)]} cos(_z)d_

u/m(r,z) : _j-c(N)(_)K,(_r) + D(N)(_)[4(1 - vu)Kl(_r)+ CrKo(_r)]}cos(_z)d_

(2.15)

(2.16)

(2.17)

(2.18)

"z(N)(r'z) = So {-C(N)(¢)K°({r)+ D(N)(¢)¢rK'({r)} sin(_z)d¢

(2.19)

cr (N)(r,z) = _--_-Ijc("'(_)[_rKo(_r)+ K, (gr'r)] - D(m(_)[(4-4VN +_Zr2)K,(_r)+(3-2Vu)_rKo(_r)]}cos(_)d_

(2.20)

arz(N)(r'z) = 21Uu Io _{ C(N)(_)KI({r)- D(N/(_)[ 2(1 -- VN)K,({r)+ _rKo({r)]}sin(_)d _

(2.21)

Crzz(N)(r,z)= --21.tu _{cfN)({)Ko({r)+ D(U)(_)[2vNKo(_r)-_rK,(_r)]}cos({z)d_

where lai and v i denote the shear modulus and Poisson's ratio for the region R i (i = 1, 2 .... N).

(2.22)
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2.2 Formulation of the Problem

The problem of a penny shaped-crack of radius rc in a long elastic cylinder of radius r I (r I > re) is

considered. We assume that there is perfect bonding between each of the constituents. All of the

materials are assumed to be homogenous and isotropic. Since the geometry of the problem is symmetric

about the crack plane, we consider a semi-infinite elastic cylinder subjected to the following boundary

conditions:

o'=(0(r,0) = p(r), 0 < r < rc (2.23)

Uz(1)(?', z) --- 0, rc < r < r I (2.24)

o'_z0)(r,0) = 0, 0 < r< rI (2.25)

u (i)(r,z) = O, ri_1 < r< r i (2.26)

_rz(i)(r,O) = O, ri-I < r< r i (2.27)

The continuity conditions for displacements and tractions are given by

=
blr(i)(Fi,Z) = Ur(i+l)(Fii,Z)

(2.28)

2.3 Reduction of the Problem to the Solution of a Fredholm

Integral Equation of the Second Kind

Due to the functional forms chosen for Z, _, and _t in each of the constituents, it is apparent that the

boundary conditions given by Equations (2.24)-(2.27) are identically satisfied by the stresses and

displacements given in Equations (2.12), (2.14), (2.16), (2.19), and (2.21). Substituting Equations (2.11)

and (2.9) into the boundary conditions given by Equations (2.23) and (2.24), we arrive at the following

dual integral equations:
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I( F(¢)J°(¢r)d¢ + I: _{ A(¢)/°(_r) - B(¢)( 2v'Io(¢r)+ _rll(¢r))} de - -p(r)
21,tl

O<r<r c

(2.29)

(2.30)

Equation (2.30) is identically satisfied if the solution for F(_) is taken as

F( _) = { I_ h( t )sin( ¢t )dt (2.31)

regardless of the form of h(t).

Substituting Equation (2.31) into Equation (2.29), we see that the function h(t) must satisfy

rlo(¢r)dr CB(¢)f_r2Ii(¢r)dr] 1, rp(r)drh(t)+2I:_lr [A(_) - 2 v' B({)]£ (_ 7 _) _---_7 --_77)) _ de- _/./i £ /(t2 _ r 2 )

Making use of the fact that

;o _{_2__ - sinh({t)

, r2I,({r)d_ _ {tcosh(_t)-sinh({t)

£ 7;Tr-Tj F

and substituting into Equation (2.32) we find that

(2.32)

(2.33)
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1 ' rp(r)dr

h(t)+2 _ {[A(¢)- 2v'B(_)]sinh(_t)-(¢tc°sh(¢t)-sinh(¢t))B(¢)}d¢-¢r ltlA , I_ ( 77)

(2.34)

Using the Fourier inversion theorem along with the boundary conditions given by Equations (2.28) and

the stress and displacements given by Equations (2.8)-(2.10) and (2.12)-(2.16), we obtain the following

relations at r = rl:

-Io(rls)A(s ) + rjsll(rts)B(s)+ Ko(rls)C(2)(s) - rlSK,(rlS)DC2)(s)

+l°(r_s)E'2)(s)-r_Sll(r_s)G'Z)(s) = @ So 1(2(1-v,)f + uf2)Jo(r_u)F(u)du = X,

(2.35)

I,(r_s)A(s) +[4(1- Vl)Ii(rls ) - rislo(ris)]B(s) + K,(r_s)CI2)(s)- I,(ris)E(Z)(s)

-[4(1- vz)K , (rd)+ rlsKo(rjs)]D(2)(s)-[4(1- vz)li(r_s ) - r_slo(rls)]G(2)(s)

-2 _ 1

=-'-_'I0 U ((2VI -1)_ +uf4)Ji(rlu)F(u)du= X:

(2.36)

/az{C(2)(s)[r_sKo(rts)+ K, (r_s)]- D(2)(s)[(4-4v2 + rt2s2)K,(rjs)+(3 - 2vz)rtsKo(rls)]

+ E(2)(s)[r_slo(r_s) - l,(r_s)]-G(2)(s)[(4-4v2 + r_2s2)l,(rts)-(3 - 2v:)r_slo(rts)]}

+lAi{-A(s)[rtslo(rls)- /,(rd)] + B(s)[(4-4v2 + rl2s2)Ii(rls)-(3 - 2v2)rlSlo(fis)]}

S,(r,.) .
: "2 " #]lu I S; F(l_/)[(--f3 "l" UL )Jo (flU)-I-{(l- 2V l )L--UL } r'_'_U ) : X3_.,_l

(2.37)

t_2s{ C'2)(s)K_(r_s) - D'2)(s)[2(1- v2)K,(rls)+ rjsKo(r_s)]- E(2)(s)I,(r_s)

-G(2)(s)[ 2(1- v z)ll (rls)- r_slo(rls)]} + I'tis{A( s)ll (rls)

+B(s)[2(1- v,)ll(rls ) - r slo(r s)]} = _2 So uF(u)f2Ji(rlu)du = X412'

(2.38)
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where, using the notation of Dhaliwal et al.,

S

f =_oSin(sz)e-":dZ=(s2+u2 )

= • -.z 2su

f2=_zsln(sz) e dZ-(s2+u2)2
(2.39)

U
= cos(sz)e-UZdz = (s 2 + u 2)

2 2
b/ --S

f4=_0 zcos(sz)e-"'_dZ-(s 2 +u2) 2

Imposing the boundary conditions given by Equations (2.28) along with Equations (2.13)-(2.16) and

(2.18)-(2.21) and using the Fourier inversion theorem, we arrive at the following relations for 3<i<_N-l:

-C ..... (s)Kt(r_,s) + E ..... (s)l_(r_ts)+ D .... (s)[4(l- v___)K,(r_,s) + r_,sKo(r ,s)]

+G ..... (s)[4(l- v,_,)l,(r_,s)- r_,slo(r_,s)]

= -C'"'(s)g, (r_,s) + E'" (s)I, (r_,s) + D'"' (s)[4(1 - v_,)g, (r_,s) + r_,sg,, (r_,s)]

+O" (s)[4(l-v__,)I,(r,s)- r,slo(r,s)]

(2.40)

-C(i-')(s)Ko(ri_,s)+ D(i-l)(s)ri_,sK,(ri_,s)- E(i-i)(s)lo(ri_is)+G(i-')(s)ri_lsl,(ri_is)

=-C(i')(s)Ko(ri_,s)+ D(i')(s)ri_,sK,(ri_lS) - E(i')(s)lo(ri_,s)+ G(i)(s)r,._,sl,(ri_,s)

(2.41)
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i-1)2t't,-I {C ( (s)[r__lSKo(ri_ls)+Kl(ri_lS)]--D(i-l)(S)[(4--4Vi l +ri_,2s2)Kl(ri_ls)+(3-2V,_l)ri_lsKo(ri_ls)]
ri_l

+E('-l)(s)[ri_lslo(ri_,s) - ll(ri_ls)]--G(i-')(s)[(4--4Vi_, + ri_12s2)ll(ri_ls)--(3 - 2Vi_,)ri_,slo(r,_ls)]}

- 2]2i{c(i)(s)[ri_,sKo(r_,s)+ K, (ri_,s)] - D(')(s)[(4-av_ + r___2s 2 )K_(r__,s)+(3- 2v_)r__,sKo(r__,s)]
ri_l

+E(i)(s)[ri_lslo(ri_zs) - ll(ri_lS)]-G(i)(s)[(4-4Vi + ri_,2s2)l,(ri_,s)-(3 - 2vi)ri_,slo(ri_,s)]}

(2.42)

211i_,{C(i-l)(S)Kl(r__,s)- D(i-')(s)[2(1- Vi_I)KI(Fi_IS)+Fi_ISKo(Fii_IS)]

-E'm)(s)I1(r__ls)-G"-l)(s)[2(l- v,_1)11(r_-is)+r__lslo(r__ls)]}

=2#i{c(i)(s)Kl(ri_,s)- o(i)(s)[2(1-vi)K1(r/_lS) +ri_lSKo(ri_lS)]

-eI')(s)I,(r__,s)-ali)(s)[2(1-vi)l,(r__,s)+r,_lSIo(r,_ls)]}

(2.43)

and at the last interface (r = rN-l)

--c_N-')(s)K,(rN_,S) + E(N-')(S)It(rN_lS)+ D(N-I)(S)[4(I--VN__)K,(rN__S)+ rN_,SKo(rN_tS)]

+G(N-')(S)[4(I- VN_I)I_ (rv_,s)-- rN_lSIo(rN_IS)]

= c(N)(s)Kl(ru_,S)+ D(N)(s)[4(I- VN)K,(rN_,S)+ rN_ISKo(rN_IS)]

(2.44)

-c(N-II(s)Ko(rN_,S)+ D(N-1)(S)rN_,SK,(rN_1S) - E(N-1)(SjIo(rN_,S)+ G(N-'I(s)rN_ISl,(rN_,S)

=--c'N)(S)Ko(rN_,S)+ DIN)(s)rN_,SKI(rN_,S)

(2.45)
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2'tiN-1{ c(N-I)(s)[FN_ISKo(FN_IS)_I_ K,(rN_IS)]
rN_l

--D(N-L)(S)[(4--4VN_I + rN__2sz)Kl(rN_,s)+(3 - 2V N_,)rN_lSKo(rN_IS)]

+E(N-')(s)[rN__Slo(rN_,s)-I,(rN_,s)]

-GIN-t)(s)[(4-4VN_I + rN__2sz)I_(rN_Is)-(3 - 2VN__)rN_,Slo(rN__S)] }

_ 211N {c(N)(s)[rN_,SKo(rN_,S)+ Kt(ru__s)]
rN_l

--D(N)(s)[(4--4VN + rN_,2s2)KI(rN_,S)+(3 - 2VN)rN_tSKo(rN_,S)]}

(2.46)

211N_ , {c(N-')(s)K,(rN_Is) - D(N-')(s)[2(1- VN_,)K,(rN_,S ) +rN_,SKo(rN_tS)]

-E(U-t)(s)I,(ru_,s)- a(N-')(s)[2(1- V N_,)I,(rN_IS) + ru_lSlo(ru_,s)]}

= 21.tN{C(N)(s)K,(rN_tS) - D(N)(s)[2(1 - VN)K_(rN_,S)+rN_tSKo(rN_,S))

(2.47)

Equations (2.35)-(2.38) and (2.40)-(2.47) represent a system of 4(N-1) equations for the unknown

functions A(s), B(s), Ci)(s), D(i)(s), E(i)(s), F(i)(s), C(i)(s), and lyi)(s) at each point in s-space. These

equations may be solved by inverting the resulting matrix equation. It is then possible to write the

functions A(s) and B(s) in the form

A(s) = _llX1"1- A2X2--_A3X3+ A4X4

e(s) = _,X, + 82X2+ e,X_+ 84X4
(2.48)

where the coefficients A i and B i are determined by the matrix inverse.

Making use of Equation (2.48), we may then write the following expression in the form
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where

[A(s)- 2v,B(s)]sinh(st)-[st cosh(st)- sinh(st)]B( st)

= Cl(S,t)X 1 .-_ C2(s,t)X 2 + C_(s,t)x3 + C4(s,t)x 4

C I(s,t) = A 1sinh(st)+ B_[(1 - 2v I)sinh(st)- st cosh(st)]

C2(s,t ) = A z sinh(st) + B2[(1- 2vl)sinh(st ) - stcosh(st)]

C3(s,t ) = A 2 sinh(st) + B2[(1 - 2vl)sinh(st ) - stcosh(st)]

C4(s,t ) = a 4 sinh(st) + B4[(1 - 2vl)sinh(st ) - stcosh(st)]

(2.49)

(2.50)

Following the analysis of Dhaliwal et al. [16], and making use of Equations (2.31) and (2.35), we find

that the expression for X 1 can be written as

XI_ --4(1-71) fr, h(t)dtf" J°(rlu)sin(ut)du
.to - - a0 S 2 + U 2

From Erdelyi [40] we find that

U2Jo(rlu)sin(ut)du

S -{- U2 )2

(2.52)

and

Jo(rlu)sin(ut) du _
l = Io S2 + U 2 --

sinh(st)Ko(rls )

S

't<b. (2.53)

U2Jo(rlu)sin(ut)du

,fO (S 2 +/22) 2 = l--s2I( ($2 ..[_ U2) 2

Jo(rlu)sin(ut)du
(2.54)

Differentiating both sides of Equation (2.53) with respect to s, we find that
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1

So J°(rlu)sin(ut)dU(s2+u2) 2 = _s[sinh(st)Ko(rls) + rlssinh(st)K,(rls)- stc°sh(st)Ko(rls)]

Substituting Equations (2.53)-(2.55) into Equation (2.52), we find that

(2.55)

-2 fro h(t)[(3 - 2vl)sinh(st)Ko(rls ) - r_ssinh(st)Kl(rls ) + st cosh(st)Ko(rls)]dtXI = ---_- _o

Following a similar procedure, we find that we may write

(2.56)

X 2 =-2(2v I -1)Io _h(t)dtSo uJ'(rtu)sin(ut)du
1_' S 2 -Jr-U 2

2 j2_ h(t)dtfo u(u 2- s2)j,(rlu)sinh(ut)du
,7_ ($2 _}_//2) 2

The second term in Equation (2.57) may be rewritten as

(2.57)

ff u(u2. sa)j,(rlu)sinh(ut)du uJ_(r_u)sin(ut)du

From Erdelyi [40], we find that

2s2fo uJ'(rlu) sin(ut)du
(se +u2) 2

(2.58)

uJ I f _i ,,( )d.
i0= , r_u_.__js___.n,../ = sinh(st)K, (r_s),

S 2 -t- U 2
t<b. (2.59)
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Differentiatingbothsidesof Equation (2.59), we obtain:

So uJ'(rlu)sin(ut)dU(s2..]_U2)2 = l"[sinh(st)f_r_sKo(r_s) +2s,LL K,(rjs)}- stcosh(st)K,(r_s)]

(2.60)

Making use of Equations (2.59) and (2.60), we find that Equation (2.57) can be written as

X2 = _2 _c h(t){(2v_ - 1)sinh(st)Kt(r_s)-[r_ssinh(st)Ko(r_s)-stcosh(st)K,(r_s)]}dt

(2.61)

Using Equations (2.31), (2.37), (2.39), (2.54), and (2.59), we find that

X3 = __[2 [_,rh(t){rls[rlssinh(st)K,(rls )_ stcosh(st)Ko(rls)]

+(1- 2vl)sinh(st)Kt(rls )- stcosh(st)Kl(r)s ) }dt ]

Similarly, the expression for X 4 may be written as

X4=-4s_(t)dt_o u3Jl( rlu)sin(ut)du

(2.62)

(2.63)

The second integral in Equation (2.63) can be written in the following form:

_ouU2Jl(r)u)sin(ut)du UJl(rlu)sin(ut)du uJ,(r_u)sin(ut)du

so that

X4 = 2 _£_,.h(t)[sinh(st)Kj(rls) + stcosh(st)Kl(rls)_ rlssinh(st)Ko(r_s)]d t

(2.64)

(2.65)
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By substitutingEquations(2.50),(2.56),(2.61),(2.62),and(2.65)intoEquation

followingrelation

1 t rp(r)dr

h(u)K(u,,)d.-

where

(2.34) we find the

0 < t < rc, (2.66)

K(u,t) = ----4 I- {[(3 - 2v,)sinh(us)Ko(r,s)- r_ssinh(us)K (r_s) + us cosh(rs)Ko(r_s)]C (s,t)

+[(2v- l)sinh(us)K (rs)- {rssinh(us)Ko(rs)- uscosh(us)K,(rs)}]C2 (s,t)

-[r's: sinh(us)K (rs)- (r,s){us)cosh(us)K,,(rs) + (1- 2v )sinh(us)K,(rs)- uscosh(us)K (r,s)]C (s,t)

+[ssinh(us)K, (rs) + s(us)cosh(us)K (r,s) - s(rs)sinh(us)Ko(rs)]C (s, t)}ds

(2.67)

Equation (2.66) is a Fredholm integral equation of the second kind having a kernel given by Equation 65.

This equation may be solved numerically for the unknown function h(t).

2.4 Representation of the Broken Fiber Problem

To analyze a single fiber fracture in a unidirectional composite, we separate the problem into a near-field

analysis and a far-field analysis. The total solution is then just the superposition of the far-field solution

and the near-field solution. The far-field solution for a uniform strain applied in the fiber direction may

be easily obtained in a manner such as that detailed by Pagano and Tandon [41]. In posing the near-field

problem, we assume a fiber fracture has occurred in a composite with a hexagonal array of fibers, as

shown in Figure 2.2. The size of the crack is denoted by r,., the size of the fiber by rf, and the distance to
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[] Matrix

Fiber

Fractured Fiber

Figure 2.2. Composite material having hexagonal packing which contains a single broken fiber. The

shaded area is selected as a representative volume element for the analysis.
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the nearest adjacent fiber by r2 Prior to the formation of the crack, load was carried by this region. The

crack is opened by a pressure Po which is equal to the negative of the fiber stress determined from the far-

field analysis such that the superposition of the near-field solution and the far-field solution produce a

traction-free crack face. Following the suggestion of Carman [42], we make the assumption that the fiber

immediately adjacent to the fracture fiber may be represented by an annular ring of material (see Figure

2.3). This assumption reduces the near-field problem to an axisymmetric one. While the point-wise

stresses determined in such a manner are not the exact solution to the near-field problem, the do

accurately depict the trends in the stress variations of interest. The inner radius of the fiber annular ring,

r2, is given by the distance to the adjacent fibers. The outer radius of the fiber annular ring, r3, is

determined from the global fiber volume fraction. For hexagonal packing, we have

r._ = 46rl 2 + r22

7rl 2 (2.68)
r4 --

Vs

In order to use the analysis developed previously in this paper, we allow the radius of the crack, r,, to

approach the radius of the fiber, r_. Equation (2.66) is then solved numerically using the Nystrom method

[43].

2.5 Numerical.Results

To demonstrate the solution, an number of numerical studies were conducted. The first such study was to

determine the effect of fiber to matrix stiffness ratio on the resulting stress state. To calculate the effective

composite properties we use the following prescribed values

V 1 = v2 = V 3 =V 4 = V 5 =0.2

(2.69)
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• Matrix

• Fiber

• Fractured Fiber

Figure 2.3. Representation of the hexagonal arrangement as an axisymmetric one having the same tiber

volume fraction.
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While the use of isotropic properties to represent the composite could be questioned, this approximation is

certainly not as severe as some of the others used in the model. First we look at the normal stress

O',a0)(0, Z) (at the center of the broken fiber) for a 65% fiber volume fraction composite. This is shown

graphically in Figure 2.4. A number of interesting features are immediately noticeable. First of all, we

see that for high values of the stiffness ratio, the normal stress becomes tensile before asymptotically

approaching zero. Even more striking, however, is the distance over which the near-field stress remains

compressive (the so-called ineffective length). This distance becomes smaller as the fiber to matrix

stiffness ratio is increased. This is exactly the opposite trend from that predicted using a shear-lag

analysis.

Of interest for making tensile strength predictions are the stress concentrations on the adjacent fibers and

the axial distance over which this increased stress acts. Because there is a strain gradient as a function of

r as well as z, it is not possible to speak of a single stress concentration value on the adjacent fiber. Rather

this value depends upon position. To illustrate this, we will consider two different radial locations on the

adjacent fiber ring: the inner edge of this ring (r = r2) and the center of this ring, denoted rl/2 and given

by

1

rl/2 =-_(_ - r2)+ r2 (2.70)

Such a comparison is shown in Figure 2.5 for the case of a 65% fiber volume fraction composite in

which/./1 / ].t2 = 20. It will be noted that there is a great difference between the maximum stress values

at these two locations. The maximum value at the inner edge is 0.183 while the maximum value at the

center is 0.052. Another interesting feature is that the maximum stress concentration at the center of the

adjacent ring does not occur in the plane of the crack. Rather, it is located at approximately 0.4 r,. above

the plane of the crack. This is not surprising in view of the results given in Figure 2.4, although it is a

feature not predicted by the shear lag analysis. The maximum value of the stress concentration at the

inner radius of the fiber ring does occur in the plane of the crack (for this particular selection of composite
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Figure 2.4. Variation of the cr (0, z) / p0 stress (at the center of the broken fiber) as a function of distance

above the crack plane for various fiber to matrix stiffness ratios.
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Figure 2.5. Variation of the _=(r, z)stress (at the inside edge of the fiber annular ring) as a function of

distance above the crack plane for various fiber to matrix stiffness ratios.

Strength Prediction In Unidirectional Composite Materials 36



properties). To determine whether this was true in general, the stiffness ratio of the constituents was

varied once again, and the resulting strain distributions plotted. The variation of the near-field stress as a

function of axial distance from the crack plane at the inner edge of the fiber annular ring is shown in

Figure 2.5. Once again a fiber volume fraction of 65% was used. In all of the cases except one

(].A 1 [ ]A 2 _--- 2), the maximum stress concentration occurs in the plane of the crack. In this one case it

occurs at 0.2 rc above the crack plane. Two stiffness ratios considered, /.t 1 //A 2 = 2 and /11 / 1.12 = 10

give almost an identical value for the maximum stress concentration. Otherwise, there is a distinct trend:

as the stiffness ratio is increased, the stress concentration at the inner radius of the fiber annular ring

decreases.

The variation of the near-field stress as a function of distance from the crack plane for different stiffness

ratios at the center of the fiber annular ring is illustrated in Figure 2.6. Here the results follow an

interesting pattern. As the stiffness is increased, the stress values increase initially and then decrease for

higher stiffness values. However, all of these values are much less than would be predicted from a local

load sharing rule. Hedgepeth and van Dyke's analysis predicts a stress concentration of 1.104 on the

adjacent fiber, which is greater than the values obtained at the center by any of the cases studied. Such a

result is not surprising in view of the amount of axial load being carried in the present model.

As a final example of application of the model, we consider the effect of fiber volume fraction on the

stress state for composites in which J'/l ] ,t/2 = 20. Four different fiber volume fractions are considered:

20%, 50%, 55%, and 65%. First we consider the effect of those changes in fiber volume fraction have on

the normal stress in the broken fiber. The results which are shown in Figure 2.7 suggest that such

changes have very little effect on the stress state in the broken fiber. However, if we consider the stress

state at the center of the adjacent fiber ring as shown in Figure 2.8 we see that changes in fiber volume
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fraction have a significant effect on the stress concentration seen here. The reason for these changes (the

stress concentration goes up as the fiber volume fraction is increased) is easily understood physically if the

geometry of the model is considered. As the fiber volume fraction is increased, the distance from the

center of the unbroken fiber to the crack tip is decreased, leading to the larger stress concentration.

There is still one major point to be considered: the magnitude of the tensile stresses carried by the matrix,

particularly at the crack tip. The radial variation of the normal stress, Gzz(i)(r,O) in the plane of the

crack for the i = 2,3, 4 cylinders is shown in Figure 2.9 for a fiber volume fraction of 65%. The resulting

stresses in the matrix adjacent to the crack tip are singular (as expected) with the power of the singularity

increasing as the value of/21 //22 is increased. We would therefore expect some plasticity in the matrix,

which would change the resulting stress state. This case has been recently studied using finite elements

by Nedele and Wisnom [44]. Their results suggest that while this plasticity does change the ineffective

length, it makes only small changes in the stress concentration.

2.6 Multiple Fiber Fractures

Accounting for the effect of multiple adjacent fiber fractures is somewhat more complex. As pointed out

by Batdorf [7], multiple adjacent fiber fractures may have a number of different shapes even for the case of

simple packing arrangements such as square and hexagonal. To simplify the analysis somewhat, we use

an approach similar to that used by Hedgepeth and van Dyke in which we will consider only arrangements

of multiple fiber fractures which are roughly axisymmetric (i.e. the number of breaks is equal to 1, 7,

19 .... ) as is illustrated in Figure 2.10.

To model such a situation, we use much the same approach as that which was used for the case of a single

fractured fiber with a few minor changes. First we calculate the inner radii of the adjacent fiber rings
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basedon the geometry for hexagonal packing. Then we calculate the outer radii so that the total area of

fibers remains constant. It would be most desirable to represent each of the broken fiber and matrix rings

individually, but this is not possible due to the nature of the solution scheme. Rather, it is necessary to

represent these broken inner fiber and matrix regions by a single cylinder having effective composite

properties. In such a manner, it is possible to calculate the stress concentrations for 1, 7, 19 ... adjacent

fiber fractures. The intermediate values may then be estimated by curve fitting between these known

values.

As an example, let us consider a composite material in which the fiber-to-matrix shear stiffness ratio is

20. This ratio is typical of glass/epoxy composite materials. The resulting maximum stress

concentrations (at the inner edge of the adjacent fiber annular ring), stress concentrations at the center of

the adjacent fiber annular ring, and the ineffective lengths (the axial distance over which the stress field is

perturbed) are given in Table 2.1 for fiber volume fractions of 30%, 40%, 50% and 60%. The results seen

here are not surprising in view of the nature of the model: as the fiber volume fraction is decreased, the

distance from the crack tip to the adjacent fiber increases. Since the model predicts singular stresses

which decay rapidly as a function of distance from the crack tip, we would expect the stress concentration

to vary directly with the fiber volume fraction. This is exactly the trend we see exhibited in Table 2.1. In

addition, as the value of the fiber volume fraction increases, the ineffective length decreases for a given

number of adjacent fiber fractures.

2. 7 Appfication to Composite Tensile Strength

Once these stress concentrations and ineffective lengths are known, it is then possible to make predictions

of composite tensile strength. As discussed previously, one of the classical models of composite tensile

strength is that developed by Batdorf [7]. Batdorf considers a composite containing N fibers, each of
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Table 2.1. Stress concentrations due to multiple fiber fractures for a glass/epoxy composite material at
various fiber volume fractions.

Fiber Volume Number of Maximum Stress Center Stress Ineffective

Fraction (%) Broken Fibers Concentration Concentration Length (Fiber
Radii)

1 1.043 1.023 15.01

30 7 1.151 1.090 25.48

19 1.312 1.188 30.76

1 1.061 1.029 12.67

40 7 1.181 1.102 22.78

19 1.363 1.207 27.55

1 1.087 1.036 9.79

50 7 1.212 1.114 20.42

19 1.411 1.224 24.85

1 1.130 1.042 4.84

60 7 1.251 1.126 18.04

19 1.453 1.234 21.56
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lengthL, which are held together by a matrix. Damage in the composite due to loading is assumed to

consist solely of breaks in the fibers. There will be single isolated breaks (singlets), pairs of breaks

(doublets), three adjacent breaks (triplets), and (in general) i adjacent breaks (i-plets). Each i-pier is

surrounded by n_ nearest neighbors, each of which is subjected to a maximum stress concentration of c, in

the plane of the break. This stress concentration acts over an axial distance of 5_ (the ineffective length).

We first assume that the fiber failure conforms to a two-parameter Weibull representation. Therefore,

when a stress cr is applied to a fiber of length l, the probability of failure, Pj_ is given by

Py(cr)=l exp[ l(cr/" ]

- J
(2.71)

where c_0is the Weibull characteristic value, m is the Weibull modulus, and lo is the reference length. For

the case in which Pf <<1, Batdorf approximates Equation (2.71) by

(2.72)

The number of singlets, Q_, may then be determined by multiplying the probability of failure given by

Equation (2.72) so that

f/mQt = N Pj = N 1
Iot,ao )

(2.73)

Following Batdorf, we next assume that the stress concentration in the neighboring fibers varies linearly

from c_ to unity over a distance _/2. We may represent such a variation functionally as:

(f(z):c,+ l-c,) (2.74)
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AfterReifsnider[28],wemayexpressthereliabilityofafiberhavingastressvariationof this type may be

given by

R = exp - --
O'a0

(2.75)

where

-1

![f( )] mdz ]
O'a0 ----(5"0 Z (2.76)

Using this relation, an the variation of the axial stress given by Equation (2.74), we can show that the

probability of failure in the overstressed region may be approximated by

(2.77)

where

m+l

_'1 = _1 q - 1 (2.78)
Cl"(c,-l)(m+l )

Because there are n/nearest neighbors to each singlet, the probability that a singlet becomes a doublet is

given by

toL';oo (2.79)

The number of singlets, QI, is given by Equation (2.73). Therefore, we may estimate the number of

doublets by
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(2.80)

In general, the number of i-plets may be given by

or equivalently,

Iim i-I _[,jQi=NL a--_-- 1-lc"nj--
lot _'0 ) j=l lo

(2.81)

(2.82)

Examining the form of Equation (2.82), it is readily apparent that a log-log plot of Q, versus _ is a

straight line having slope, im. A representative schematic diagram of Equation (2.82) is shown in Figure

2.11 for several i-plets as a function of the applied stress level. This envelope of intersection points has a

special significance in the Batdorf formulation. Over the stress range in which an i-plet lies on the

envelope, it is unstable (as soon as it is created it will immediately become an (i+l)-plet, which will

immediately become an (i+2)-plet until composite failure occurs). The failure stress is given by the lowest

stress at which any unstable i-plet is present. This is the stress at which the envelope intersects the

horizontal line Q, = I (or In Qi = 0).

At this point, we are now ready to estimate the tensile strengths of the glass/epoxy composites considered

in the previous section. The necessary inputs to the model are the stress concentrations and the ineffective

lengths from Table 1, as well as the Weibull paramters Go, m, and lo. Unfortunately accurate

measurements of these Weibull parameters are difficult to obtain. Typical values for m are approximately
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5-8.Thevalueforo0 is more variable depending upon fiber type. For this reason, the predicted values

for composite strength will be expressed in terms of the ratio of o/o0 using a reference length, lo, of 1 cm.

If the value of o0 is known at a different reference length, it may converted to this reference length using

the relation

-1

o0(t2)  ,12;

In addition to these properties of the fibers, we also need to know the number of fibers in the composite,

N, and their length, L. For this example, we will consider a component 6" (15 cm) X t/2" (1.3 cm) X

6/100" (0.15 cm). If we assume the fibers to initially be continuous, then L may be taken equal to 6" (15

cm) and the number of fibers in the composite may be approximated by

N = Cross Sectional Area of the Composite V/ (2.84)
Area of the Fiber

where Vj is the fiber volume fraction.

The question then becomes how to represent the stress concentrations and ineffective lengths for the

values of the stress concentrations and ineffective lengths intermediate to those given in Table 1. Based
q

on the variation of those values given in Table 1, the stress concentrations were fit to a quadratic form

over this range of number of broken fibers, while the ineffective lengths were fit to log-linear lorm. These

data, as well as the curve fitting parameters are shown in Figures 12, 13, and 14.

Combining all of this information, the fiber stress at which the instability occurs in the Q-plots may be

readily calculated for the two stress concentration fits. The composite strength may be determined using

this information and the relation
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= E_o- (2.85)

_c Ef f

where of is the fiber stress at which the instability occurs, Ec is the composite modulus, E_, is the fiber

modulus, and oc is the composite strength. Figure 2.15 shows the results for predicted composite

strengths as a function of fiber volume fraction for values of the Weibull modulus ranging from 4 to 8

using the maximum stress concentration values (this should represent a conservative estimate of the

composite strength). These values have been normalized to the characteristic value, Oo, from the Weibull

distribution. In addition, the predicted strength using a rule of mixtures type calculation has been shown

for comparison. Such as calculation has been made by

oc: +(1- )xo,

m

where X,, is the matrix strength, and X I

distribution so that

(2.86)

is the average fiber strength calculated from the Weibull

(2.87)

In all cases that have been calculated, the predicted values using the statistical model in conjunction with

the local stress concentration analysis are greater than those predicted by the rule of mixtures type

analysis. This is an example of the "composite effect" in which the actual behavior cannot be estimated

simply by summing the contributions of the constituents.

There is some question as to what value for the stress concentrations should be used in the estimation of

the composite strength. Nedele and Wisnom [44] have based their calculations on the average stress

concentrations on the adjacent fibers. To investigate this effect, a similar approach has been used in

Figure 2.16, although the stress concentration at the center of the adjacent fibers has been used rather than
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the average. This was done in order to simplify the calculations, and in the cases investigated thus far

such values do not differ greatly from the average values. In the case of Figure 2.16, the composite effect

is even more pronounced--the predicted strengths using the present analysis are always more than 15%

greater than the corresponding values using the rule of mixtures calculation.

2.8 Model Refinements

Despite the features of the above stress analysis (it is an exact solution to the problem being solved and

solutions may be obtained more rapidly than equivalent finite element models), it is still lacking in many

ways. First of all, the solution is limited to a single crack within a single material. Secondly, the solution

is presently limited to isotropic constituents. Do to such limitations, it may not be accurately used to

represent the stress state in composites containing graphite fibers. A number of approximate solutions

have been presented to address these problems. One of the most general is that which has been developed

by Pagano [26] for axisymmetric damage in a concentric cylinder assemblage. The solution is quite

general, and may readily be applied to the analysis of the stress states surrounding fiber fractures. As an

example, we shall consider the strength prediction for a composite which has constituent properties

typical of a graphite/polymer composite at a fiber volume traction of 60%. The procedure employed is

similar to that used in the above analysis with one exception: rather than effective properties to represent

the broken inner fiber and matrix regions, the fiber rings are broken as illustrated in Figure 2.17.

In this case, rather than varying the fiber volume fraction in the analysis, we will keep the fiber volume

fraction constant at 60% in the analysis, and vary the stiffness of the matrix. Such a situation would arise

physically if we increased the temperature from room temperature to some elevated temperature. The

fiber properties used are given in Table 2.2.
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Table 2.2. Fiber mechanical properties used in the stress concentration analysis.

Property

E_

Value

301 GPa

E22 20.0 GPa

G_2 20 GPa

v12 0.20

v23 0.25
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Threedifferent values for the matrix modulus were employed: 0.75 GPa, 1.50 GPa, and 3.38 GPa (an

constant value of the Poisson ratio equal to 0.35 was utilized). The highest stiffness value is typical of a

polymeric material at room temperature. The other values are values that could be obtained as the glass

transition temperature is approached. Results obtained for the stress concentrations and ineffective

lengths are presented in Table 2.3. There are a number of interesting phenomena that occur here. First of

all, the stress concentrations do not appear to be greatly influenced by the matrix stiffness values (the

greatest difference between corresponding stress concentration values is approximately 6%). However,

there is a large difference in the predicted ineffective lengths. As the matrix stiffness is decreased from

3.38 GPa to 0.75 GPa, the ineffective length increases by more than a factor of two for the numbers of

fiber fractures considered. An interesting finding may be seen in Figure 2.18 where the stress

concentration results from the axisymmetric model for a matrix modulus of 3.38 GPa have been compared

to the results of the influence function approach of Hedgepeth and Van Dyke [20]. In their results,

Hedgepeth and Van Dyke consider two stress concentrations for the hexagonally packed array: the stress

concentration at an adjacent element on a major diagonal and the maximum stress concentration on an

adjacent element. For this particular case, the center stress concentration appears to be nearly identical to

that of the elements on the major diagonal. This result is not surprising based upon the nature of the two

models. In the Hedgepeth and Van Dyke solution, the stress in each of the fibers is assumed to be

constant over its cross-section, thus we would expect this stress to represent the average value at a given

location.

The final step is to determine the effect of this change in matrix stiffness on the tensile strength of the

composite material. To do so, the same approach is employed that was used for the estimation of the

tensile strength of the glass/epoxy composite materials. First of all, the maximum and center stress

concentrations for the different values of the matrix stiffness are fit to polynomial expressions. The results
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Table 2.3. Stress concentrations and ineffective lengths obtained using Pagano's [26] axisymmetric model

as a function of matrix stiffness and number of broken fibers for a graphite/polymeric composite material.

Matrix Modulus Number of Maximum Stress Center Stress Ineffective

(GPa) Broken Fibers Concentration Concentration Length (Fiber
Radii)

1 1.226 1.104 44.06

0.75 7 1.482 1.285 93.64

19 1.837 1.475 149.44

1 1.254 1.099 29.90

1.50 7 1.503 1.265 63.50

19 1.852 1.434 96.80

1 1.288 1.090 17.12

3.38 7 1.520 1.239 41.34

19 1.885 1.393 63.06
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and the analysis of Hedgepeth and Van Dyke [20].
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of such a fitting process are shown in Figures 2.19 and 2.20. In addition, the ineffective lengths are fit to

a power type expression as shown in Figure 2.21. Once such a process is complete, it is then possible to

use the Batdorf analysis in the same manner as it was used for the glass/epoxy composite to predict the

composite tensile strength. The results for such a prediction using the maximum stress concentration

values are shown in Figure 2.22 as a function of Weibull modulus and matrix stiffness. In addition, the

results for such a prediction using the center stress concentration values are shown in Figure 2.23. Such

results could prove useful for the use of composites at elevated temperatures. By using the appropriate

matrix stiffness value at a given temperature, it is possible to use Figures 2.22 and 2.23 to estimate the

corresponding tensile strength.

The results presented thus far have been only for parametric studies, without comparison to experimental

data. As previously mentioned, complete characterizations of fiber properties to determine the Weibull

parameters are difficult to obtain. However, Northrup corporation, as part of the "Development of

Ultralightweight Materials" program (Air Force Contract No. F33615-88-C-5452), performed an series of

extensive characterizations of four different graphite fibers as well as their composites [45-47]. The

results are available on a limited distribution basis. To protect the data results will be presented on a

normalized basis (normalized to the maximum experimentally measured average strength value). Figure

2.24 shows a comparison between the predicted strengths for composites made from each of the four

fibers, as well as the predicted values based upon the maximum stress concentration. In all cases, the

experimental data lie below the prediction (as would be expected). Figure 2.25 shows a comparison

between the experimental data and the predictions based upon the center stress concentration value. For

these predictions, the model over predicts the strength for all cases except two. However, it is able to give

reasonable agreement, except for the composites made from the T1000 fiber.
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Figure 2.19. Center stress concentration on adjacent fibers as a function of number of broken fibers and

matrix stiffness for a graphite/polymeric composite material.
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Figure 2.20. Center stress concentration on adjacent fibers as a function of number of broken fibers and

matrix stiffness for a graphite/polymeric composite material.
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graphite/polymeric composite material.
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Figure 2.23. Predicted composite strength based on center stress concentration as a function of matrix

stiffness and fiber Weibull modulus for a 60% fiber volume fraction graphite/polymeric composite

materiaL.
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Figure 2.24. Comparison of predicted strength based on maximum stress concentration and

experimentally measured values for composites containing four different graphite fibers.
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Figure 2.25. Comparison of predicted strength based on center stress concentration and experimentally
measured values for composites containing four different graphite fibers.
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3. Durability And Damage Tolerance Analysis In
Composite Materials

The durability of composite materials, particularly the area of analytical modeling of damage and the

resulting degradation in material properties, has received much attention in recent years [48].

Nevertheless, the prediction of the remaining strength and life in these inhomogeneous, anisotropic

materials is inherently complicated--there are many different damage modes (such as delamination or

matrix cracking) that may develop and interact before a final failure occurs. These damage modes, that

occur before final failure, make it possible to design components from composite materials that are

extremely damage tolerant. Due to this complex interaction of the damage modes, methods of analysis

typically used for engineering metals which involve the propagation of a self-similar single crack cannot

be used with composite materials. However, to use the damage tolerance composite materials possess to

its fullest, we must have some method to predict the stiffness, strength, and life of these materials in

differing environmental conditions. In this section, we consider the implementation of a kinetics-based

approach to such a method using damage accumulation concepts. Such an approach is implemented using

the critical element model proposed by Reifsnider and Stinchcomb [49].

3.1 Damage Accumulation Concepts

In the present analysis we will follow arguments presented by Reifsnider et al. [38] for damage

accumulation in composites. We begin our analysis by postulating that remaining strength may be used as

a damage metric. We next assume that the remaining strength may be determined (or predicted) as a

function of load level and some form of generalized time. For a given load level, a particular fraction of

life corresponds to a certain reduction in remaining strength. We claim that a particular fraction of life at

a second load level is equivalent to the first if and only if it gives the same reduction in remaining
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strength, as illustrated in Figure 3.1. In the case of Figure 3.1, time t_ at an applied stress level S__ is

equivalent to time t2 at stress level Sa2 because it gives the same remaining strength. In addition, the

remaining life at the second load level is given by the amount of generalized time required to reduce the

remaining strength to the applied load level. In this way, the effect of several increments of loading may

accounted for by adding their respective reductions in remaining strength. For the general case, the

strength reduction curves may be nonlinear, so the remaining strength and life calculations are path

dependent.

Our next step in the analysis is to postulate that normalized remaining strength (our damage metric) is an

internal state variable for a damaged material system. This normalized remaining strength is based upon

the selection of an appropriate failure criterion (such as maximum stress or Tsai-Hill) which is a scalar

combination of the principal material strengths and applied stresses in the critical element. In this way

we are able to consider a single quantity rather than the individual components of the strength tensor. We

denote this failure function by Fa. We next construct a second state variable, the continuity [50], which

we shall define to be (1-Fa) and denote by _. We shall attempt to define our remaining strength and life

in terms of 41. To do so, we assume that the kinetics are defined by a specific damage accumulation

process for a particular failure mode, and assign different rate equations to each of the processes that may

be present.

As an example, let us consider a common kinetic equation (a power law) such that

d_
- A0/J

dz

wherej is a material constant and "t"is a generalized time variable defined by

(3.1)
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Figure 3. l.The use of remaining strength as a damage metric.
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t
2" = -- (3.2)

and "_is the characteristic time for the process at hand. This characteristic time could be a creep rupture

life, a creep time constant, or even a fatigue life, in which case

n

Z"= -- (3.3)
N

where n is the number of fatigue cycles and N is the number of cycles to failure at the current applied

loading conditions. Next we rearrange Equation (3.1) and integrate so that we have

Ig i r_

I d_t= A f (v/('r)f dz
_o 0

If we set A=-I andj = 1, we arrive at

(3.4)

Ilt i -lit o : 1- Fa i -(1- Fao): -AFa :-I (1- Fa('c))d't"
0

(3.5)

Then we define our normalized remaining strength, Fr so that

Fr = 1- AFa = 1- [ (1- Fa(z))dz (3.6)

0

In such a form, the failure condition is the point at which the remaining strength equals the applied load

(Fr = Fa).

A special case of Equation (3.6) is that of fatigue loading at a constant amplitude in which
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n

N

Fa= S_

Suit

Fr= Sr

Suit

(3.7)

Substituting into Equation (3.6), we arrive at

[ - s°l(n)S_=I_ 1

Su,t S,,,, )\ N J
(3.8)

This form is identical to that proposed by Broutman and Sahu [33] to explain the fatigue behavior of

fiberglass.

If instead of the kinetic equation given in Equation (3.1), we use a different form given by

de/= 0�jr j_ l (3.9)
dv

If we integrate Equation (3.9) from "c_to x2, we obtain

r,

u/2 - 0/1 = Fr2 - Fr_ = AFr = -I(1 - Fa)jvJ-ldv (3.10)
rl

If we set xl equal to zero and Frl equal to unity, we arrive at the remaining strength as a function of

generalized time

Fr = 1- i (1- Fa('c))j'cJ-'dl;
o

For the case in which Fa is constant, Equation (3.11 ) may be integrated analytically to yield

Fr = 1- (1 - Fa)v j

(3.11)

(3.12)

Equation (3.11) has been used with a great deal of success [35-38] for cases in which Fa(12) is

continuous. However, for cases in which Fa('c) is not continuous (such as in the case of block loading)
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we use a slightly modified approach based on the idea of remaining strength as a damage metric. To

explain our implementation of these ideas, we will consider the case of block loading at a level Faj for a

generalized time "t"I resulting in a remaining strength Fr. This loading is followed by loading at a level

Fa 2. The question then is how to determine the equivalent amount of generalized time, 1"2°, that would

have been necessary to cause an equivalent amount of damage (reduction in residual strength) at the level

Fa 2. We will call a time "pseudo-time" because it does not refer to actual time. Substituting into

Equation (3.12) and using the idea of equivalent remaining strength, we obtain

Fr = 1-(1- Fal)1"1J = 1-(1- Fa2)(1"2°) j (3.13)

Equation (3.13) may then be solved for the pseudo-time to yield

1

=(:- Fr/ 1"2° _,1- Fa 2 (3.14)

In order to understand such a procedure, it may be helpful to consider a specific example such as that

shown in Figure 3.2. This represents fatigue loading at an applied stress level of Fa_ (with a

corresponding characteristic number of cycles to failure NI) for nt cycles followed by loading at a level

Fa 2 (with a corresponding characteristic number of cycles to failure N2) for An cycles. The number of

pseudo-cycles, n2°, is given by

rl-Fr)_n2°:N21"2 °= i-_a 2 N2
k

(3.15)

Making use of Equation (3.10), the change in remaining strength, AFr, over the interval (nl, n 1 + An)

(3.16)

which corresponds to an interval (n2 °, n2 ° + An) is then given by

o J "
Fa  Ir. _+A.]_( =oyl

_r=-(l- ='IL N2 J _.N2) J

Durability And Damage Tolerance Analysis In Composite Materials 76



!.__

O
Z

1

F

//1

Cycles

n 1 + AH

N
2

Cycles

N
1

Figure 3.2. Calculation of equivalent ("pseudo") cycles for block loading.
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In general, such an approach may be carried out for any number of blocks of loading having an applied

stress level Fai so that the remaining strength is given by

Fr = 1 - ,_-,i:ub_c_ AFr_ (3.17)
z---.ai= 1

where Nblocksis the number of blocks of loading. This procedure has been recently been used with a great

deal of success for ceramic composite materials [51 ] and also with polymeric composites [52].

3.2 Concepts of the Critical Element Model

Now our problem has been reduced to determining the inputs to either Equation (3.11) or Equation (3.17).

To do so, we introduce the "critical element" concept [49]. The essentials of the critical element model

are shown schematically in Figure 3.3. Such an approach is based upon the assumption that the damage

associated with property degradation is widely distributed within the composite laminate. In addition, it is

assumed that a representative volume can be chosen such that the state of stress in that volume is typical

of all other volumes in the laminate, and that the details of stress distribution and damage accumulation in

that volume are sufficient to describe the final failure resulting from a specific failure mode. Thus, it is

possible to select different representative volume elements for different failure modes. We proceed by

further dividing the representative volume into "critical" and "sub-critical" elements. The critical

elements are selected in such a manner that their failure controls the failure of the representative volume

and therefore (by definition of the representative volume) of the laminated component. The remainder of

the elements in the representative volume are regarded as sub-critical because their failure does not cause

failure of the of the representative volume and, therefore, of the component. Their failure (due to such

events as cracking or delamination) does, however, lead to greater stresses in the critical element that

contribute to the eventual failure of the component. As an example of such a failure process, we may

consider the case of tensile fatigue failure of a cross-ply laminate. During the fatigue process, matrix

cracks develop in the 90 ° plies. However, these cracks do not cause failure of the laminate. They do
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increase the stress level in the 0° plies. But it is only when the 0° plies fail that the laminate fails. Thus,

in this simple example, the 0° plies would correspond to the critical element and the 90 ° plies would

correspond to the sub-critical element. This example takes into account only ply-level knowledge. The

inclusion of micromechanical models (such as that for tensile strength) is readily accomplished within the

framework of the model [39]. All of our calculations of remaining strength and life are then carried out

within the critical element. The process used to calculate the remaining strength is given in Figure 3.4.

3.3 Validation Examples

In order to validate the remaining strength and life prediction scheme described above, a number of initial

validations were performed. These validations were based upon experimental data taken from the

literature which was then compared to the predicted values. The material used in the first two of these

validations present study is the Aromatic Polymer Composite (APC-2) which is PolyEtherEtherKetone

(PEEK) matrix reinforced with AS-4 carbon fibers. PEEK is a semi-crystalline polymer with a glass

transition temperature of 144°C and a melting point of 335°C. Typical unidirectional properties of this

material system are given in Table 3.1.

One of the principal reasons that this material system was chosen is that ii has been well characterized

experimentally. In particular, Picasso and Priolo [54] have characterized the unidirectional (0 °) fatigue

behavior of APC-2. This data were found to be well fit by a bi-linear form as follows:
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Table 3.4. Mechanical properties of APC-2 composites [53].

QUANTITY

E1

VALUE

19.4 msi (134 GPa)

E2 1.29 msi (8.89 GPa)

Gt2 0.74 msi (5.10 GPa)

vl2 0.35

Xt 303 ksi (2090 MPa)

Xc 176 ksi (1210 MPa)

Yt 11.6 ksi (80 MPa)

Yc 40.6 ksi (280 MPa)

SS 11.6 ksi (80 MPa)
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Figure 3.4. Flowchart of the approach used to calculate remaining strength.
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S
--= A. + B. log N/
Suit

An = 1.312

B. = -0.1818 Nf < 5982 cycles (3.18)

A. = 0.7866

B. = -0.0425 Nf > 5982 cycles

a comparison of the experimentally determined values and this fit is shown in Figure 3.5. Equation (3.18)

can then be solved for N to obtain the characteristic time for the fatigue process to be used in Equation

(3.3).

The validation data to be considered are that of Curtis [55], who studied the fatigue behavior of

[0/90/90/0]s laminates of APC-2. These tests were conducted in load control at room temperature using

sinusoidal loading at a frequency of 10Hz. Although the tests were conducted in load control, Curtis

chose to present his data in terms of initial peak applied strain for comparison purposes with other

materials. These initial peak applied strains were converted to applied stresses by use of classical

lamination theory (CLT) for purposes of remaining strength and life predictions. 'Using solely the

characteristic time information from Equation (3.18) and the critical element scheme illustrated in Figure

3.4, it is possible to determine the remaining strength as a function of applied stress level and cycles.

With this information known, life prediction becomes a trivial task--the life is given by the point at which

the remaining strength equals the maximum applied load. The results of such predictions are shown in

Figure 3.6. We see that the agreement is quite good, although in most cases the experimental lives are

less than the predicted ones. This is not surprising--the predicted lives are based upon the initial stiffness

values given in Table 3.1. If the changes in stiffness in the 90 ° plies (subcritical element) due to matrix
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Figure 3.5. Comparison between measured and fitted fatigue lives for unidirectional APC-2 based on the

data of Picasso and Priolo [54].
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cracking were included, the stress in the 0 ° plies (critical element) would be increased, leading to shorter

predicted lives. However, the data of Curtis did not include such stiffness reduction information, and

therefore it is not included in the modeling.

The next data to be considered are that of Simonds and Stinchcomb [56], who studied the fully reversed

(R=-I) fatigue of [(0/+45/90/-45)s]4 APC-2 laminates containing a center hole. The laminates had

dimensions of 4.75 in X 1.5 in (121 mm X 38.1 ram) and the hole was 0.375 in (9.5 mm) in diameter.

The presence of the hole complicates the modeling somewhat. One initial approach would be to use the

elastic stress concentration due to the hole to "knock-down" the laminate strength. However, experience

has shown that such an approach leads to overly conservative estimates of notched strength. An two

alternate approaches have been suggested by Whitney and Nuismer [57]. In one of these approaches,

failure of the laminate is predicted to occur when the average stress over some characteristic distance, ao,

matches the unnotched laminate strength. We use this approach with one modification: rather than using

the laminate strength and average laminate stress, the Whitney-Nuismer criterion is applied on a ply-level

basis. Experience has also shown that this averaging distance, a0, is typically on the order of the total

laminate thickness. For the particular laminate used by Simonds and Stinchcomb, a value of a0 = 0.178

in (4.52 mm) was found to well represent the quasi-static compressive strength. Using this information,

along with the unidirectional S-N curve information from Picasso and Priolo, it was possible to 16redict

fatigue lives for compression-controlled failure. The results are shown in Figure 3.7. The agreement is

obviously quite excellent.

In addition to the number of cycles to failure information, Simonds and Stinchcomb also obtained residual

strength measurements. These measurements may be directly compared to the predicted values from the

analysis. An example of such a comparison is shown in Figure 3.8 for a maximum applied stress of 22.0
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ksi (151 MPa). The agreement here is also seen to be good, although the predicted remaining strength is

always greater than the experimentally determined value.
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4. Quasi-Static and Fatigue Behavior of Notched
[0/9014s APC-2

4.1 Experimental Techniques

4.1.1 Specimen Preparation

All the composite panels used in this study were fabricated from prepreg supplied by ICI. The panels

were laid up in a 6" X 6" (15.25 cm X 15.25 cm) mold in a [0/9014s stacking sequence. In an effort to

evaluate the effect of the level of crystallinity of the matrix on the behavior of the composite, three

different cooling rates were used to manufacture the panels: 10°C/rain (the rate recommended by ICI),

5°C/min, and l°C/min. After the panels were manufactured, they were examined ultrasonically using a

C-scan technique. All the panels were determined to be of good quality, within the limits of the

technique. Subsequent to the C-scan process, the panels were machined into 6" inch long by 1" wide

specimens containing a 0.250" diameter center hole.

4.1.2 Quasi-Static Testing

These tests were conducted in an electro-hydraulic load frame with hydraulic wedge grips operated in load

control using a grip pressure of 1200 psi. A loading rate of 200 lb/sec was used for all quasi-static tests

This relatively high rate of loading (specimen failures occurred within 30 seconds) was chosen because

the ultimate strength values obtained in the tests were to be used to determine load levels for the fatigue

testing. During the tests, strain was measured by means of a 1" gage length extensometer centered over

the hole. The knife edges of the extensometer were secured in V-notched aluminum tabs which had been

bonded to the specimen surface. During the testing process, the extensometer output, as well as the load

and stroke signals were recorded at a rate of 10 samples per channel per second using a computer

controlled data acquisition system [52]. This was accomplished by sampling the data at 360 points per

channel per second, and then averaging blocks of 36 points per channel. The failure load, determined by
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the peak indicator of the load frame, was recorded for each of the specimens and used to determine the

specimen's ultimate strength.

4.1.3 Fatigue Tests

The fatigue tests were performed in load control at 10 Hz (sinusoidal waveform) using a R-ratio of 0.1.

Two fixed percentages of the average ultimate strength values from the quasi-static tests were used:

80.0% and 87.5%. These loads were chosen in an effort to provide a compromise between little (or no)

damage development at lower load levels and uncontrollable, instantaneous or nearly instantaneous failure

at high load levels. An extensometer was mounted across the hole in a manner identical to that used for

the quasi-static tests. During the course of the experiment, maximum as well as minimum values of load,

actuator displacement, and strain were recorded using a computer-controlled data acquisition system.

This was accomplished by acquiring data at 1000 points per channel per second, dividing the data into

discrete cycles, and storing only the maximum and minimum values [52]. Early experience with this

material system suggested that fatigue failures would not occur in a period of 106 cycles, therefore the tests

were interrupted after periods of 100, 10000, and 100000 cycles for damage analysis and residual strength

testing.

4.1.4 Penetrant Enhanced Radiography

Penetrant enhanced radiography has proven to be a valuable tool for monitoring and evaluating damage

development in composite laminates. This technique allows one to detect damage modes such as fiber

failure, matrix cracking, longitudinal splitting, and delamination. Using radiography at different stages

in the life of a specimen can provide particular insight into the mechanisms of damage development. The

procedure for obtaining the penetrant enhanced used in this investigation radiograph involved several

steps. First the specimen was removed from the load frame, and an X-ray opaque penetrant was applied

liberally to the specimen surface. This penetrant--a zinc iodide solution---consisted of 60 grams of ZnI2

mixed in 10 ml each of water, isopropyl alcohol, and Kodak Photo-Flo 200. As this penetrant is quite
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corrosive, it was allowed to remain on the specimen for only two hours. After this period, the penetrant

was removed from the surface of the specimen. The specimens were then placed fiat on a sheet of Kodak

M-5 double-sided emulsion film in the X-ray cabinet (Hewlett Packard 43805N Faxitron Series X-ray

System) at a distance of 16 inches (40 cm) from the emitter. A trial-and-error process was used to

determine that a 30 kVp voltage applied for a period of 30 seconds produced acceptable quality

radiographs.

4.1.5 Strip Strain Gages and Residual Strength Testing

In an effort to quantify the relaxation of stress concentrations around the hole during the fatigue process,

strip strain gages (Micro Measurements EP-08-045PG-120) were adhesively bonded to the surface of the

specimens using a cyanoacrylate adhesive (M-Bond 200, also supplied by Micro Measurements). These

gages were located along the specimen axis adjacent to the hole in a manner illustrated by Figure 4.1. In

order to determine the initial strain distribution, gages were applied to several specimens before the

specimens were fatigue loaded. The specimens were then ramped quasi-statically to a low load level

(corresponding to a stress of approximately 4000 psi--28 MPa), and the resulting strain distribution was

recorded. Subsequently, the specimens were fatigue loaded and the maximum as well as minimum strains

experienced by each gage were recorded as a function of cycles. At the high strain levels employed during

the fatigue tests, gage failure occurs quite rapidly. Therefore gages were applied to the specimens after

the X-ray process was completed. This also was not entirely satislhctory, as bonding the gage to the

surface after the dye penetrant used lbr the radiography had been applied proved to be difficult. As a

result, for subsequent specimens the gages were bonded to the surface before any penetrant was applied.

The specimens were then loaded quasi-statically to the same low stress level, 4000 psi (28 MPa), that was

used prior to the fatigue process and the resulting strain distribution recorded. Next the specimens were

removed from the load frame, penetrant applied, and X-rays taken. Finally, the specimens were placed in

the load frame for residual strength testing. These residual strength tests were conducted in a manner

identical to that used for the quasi-static tests.
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Figure 4. !. Strip strain gage placement along hole axis.
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4.2 Experimental Results and Discussion

4.2.1 Quasi-Static Testing

Due to the amount of material available for testing, two specimens were tested for the cooling rate of

10°C/rain, and one each for the cooling rates of 5°C/rain and l°C/min. The results of these tests are

summarized in Table 4.1. It should be notched that the strength was calculated on the basis of a gross,

rather than a net, section stress and that the strain values were the average strains measured by the

extensometer over its gage length. Although it is certainly undesirable to draw a definitive conclusion

from such a small data set, the cooling rate does not appear to significantly affect the quasi-static strength.

There seems to be a great deal of scatter in the strain to failure and particularly in the modulus data,

particularly in light of the agreement in the strengths. This discrepancy could perhaps be explained by

misalignment of the extensometer tabs with respect to the hole. Examples of the failed specimens are

shown in Figure 4.2. As expected the failures all occur at the location of maximum stress concentration

due to the hole an proceed perpendicular to the loading direction.

4.2.2 Fatigue Testing

A total of eighteen specimens were tested (nine at each of the different load levels) for this investigation.

Example normalized compliance curves based upon the extensometer strain measurements are shown in

Figure 4.3. The data have been normalized to the compliance of the specimen during the first cycle.

These data proved to be extremely reproducible. In addition to' these measurements, observations of the

surface of the specimen were made periodically during the test. In all of the specimens except for those

six in which the test was stopped after 100 cycles, longitudinal splits emanating from both sides of the

hole could be observed on the surface of the specimen with the naked eye. The rate of growth of these

splits appeared to be proportional to the applied load level.
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Figure 4.2. Failed cross-ply APC-2 quasi-static specimens.
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Table 4.1. Notched quasi-static test results for APC-2 laminates having different cooling rates.

Specimen ID Cooling Rate Notched Strength Notched Strain to Notched Modulus
°C/Min ksi Failure msi

(MPa) % (GPa)

APC-03-04 10 55.6 (383) 0.941 6.11 (42.1)

APC-04-01 10 56.1 (387) 0.897 6.39 (44. I)

APC-07-02 5 57.5 (396) 0.962 6.09 (42.0)

APC-10-01 1 58.0 (400) 0.915 6.40 (44.1)
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4.2.3 Penetrant Enhanced Radiography

This technique proved to be useful for identifying features of the damage development, although there

were some problems with its implementation. As mentioned previously, the penetrant was only allowed to

remain on the specimen for two hours, and then groups of specimens (normally three) were radiographed

simultaneously. During subsequent viewing of the X-rays, it became apparent that the amount detail that

was observable in the radiographs was highly dependent upon the location of the specimens within the X-

ray cabinet. In particular, matrix cracking was difficult to observe in the specimens which were not

placed at the center of the cabinet, directly under the emitter. However, the longitudinal splits were

always readily apparent, with the exception of the tests which were interrupted after 100 cycles at 80% of

the ultimate strength. In this case, it appears that the splits are still in their initiation phase. Rather than

being present on both sides of the hole and extending in both directions, there is only one split adjacent to

the hole which extends in one direction. Radiographs of the specimens at different stages of life are

shown in Figures 4.4 and 4.5 tbr 80% and 87.5% of ultimate strength, respectively. One interesting

feature of the splits that can be observed it that they do not emanate from the location of the maximum

tensile stress concentration. Rather, they begin a few degrees above and below this location.

Because these splits are readily identifiable in the radiographs (and also on the surface of the specimen

during the te_;t), it was hoped that the split length could be correlated with the reduction of the stress

concentration due to the hole that is known to occur during the fatigue of composite materials. As a

result, the individual split lengths for each of the specimens were measured. The results of such

measurements are shown in Figure 4.6, along with the resulting curve fits. In view of the stress level

dependence of the length of the splits, it is not surprising that the strains measured across the hole during

the fatigue tests using the extensometer are greater at a given number of cycles for specimens fatigued at

87.5% UTS than specimens fatigued at 80% UTS.
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Figure 4.4. Radiographs of specimens fatigued at 80% of ultimate strength for 100, 10000, and 100000

cycles.
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Figure4.5.Radiographsofspecimensfatiguedat87.5%ofultimatestrengthfor100,10,000,and100000
cycles.
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4.2.4 Strip Gage Results

Strain distributions near the hole were measured on three specimens before fatigue, and on at least two

specimens at each of the different stages of life for the two stress levels. The results of these

measurements are given in Table 4.2, where the strains have been obtained at each gage position at an

applied stress level of approximately 4000 psi (28 MPa). In light of the statistical nature of the damage

development process in composite materials and the difficulty in positioning the gages in a consistent

manner, these measurements proved to be surprisingly reproducible. It should be noted that increases in

strain (such as that for 100000 cycles at 80% of the ultimate strength) do not correspond with increases in

stress as a result of increased specimen compliance with damage and a redistribution of the stresses.

These ideas will be investigated during the analysis.

4.2.5 Residual Strength Results

After the radiography procedure and the strip strain gage tests, the residual strength tests were conducted.

The results of these tests are summarized in Table 4.3. The residual strength values for this material

system exhibit an interesting pattern. First there is an initial decrease in the residual strengths, followed

by an increase. In addition to this interesting behavior, the specimen failures exhibited three modes of

failure. In the first mode, the specimen failures appeared identical to those from the quasi-static tests (i.e.

failures occurred along the axis of the hole in a line perpendicular to the axis of the applied load). In the

second mode of failure, the failures occurred in a line perpendicular to the applied load, but in an offset

location from the axis of the hole. The final mode of failure was a combination of the previous two. In

this case the failure was antisymmetric to the loading axis. Examples of the failed specimens are shown

in Figure 4.7. No direct correlation was observed, however, between the failure mode and the residual

strength values. Note that the specimens which were fatigued 100000 cycles at 87.5% of the ultimate

strength had consistently higher remaining strengths than those fatigued at 80% of the ultimate strength.
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Table4.2.StripstraingageresultsforAPC-2laminates.

Specimen
APC-05-01

Cooling
Rate

(°C/min)
10

Normalized

Fatigue
Stress Level

N/A

Applied

Fatigue

Cycles
Before

Gage

(_tE) .
884

Gage

• (p.E)
526

1 Gage 2

(laE)
567

540

498

545

562

490

532

481

519

544

619

599

582

570

584

586

529

568

APC-04-05 10 N/A Before 815 494

APC-07-01 5 N/A Before 775 456

APC-04-05 10 80% 100 833 504

APC-05-01 10 80% 100 888 520

APC-07-01 5 80% 100 783 449

APC-03-02 10 80% 10000 781 490

APC-06-02 5 80% 10000 687 449

APC- 10-03 1 80% 10000 744 472

APC-03-01 10 80% 100000 901 493

APC-06-05 5 80% 100000 950 562

APC- 10-02 1 80% 100000 940 517

APC-04-02 10 87.5 % 100 892 531

APC- 10-04 1 87.5 % 100 873 520

APC-06-03 5 87.5% 10000 938 533

APC-07-04 5 87.5 % 10000 921 537

APC-04-04 10 ' 87.5% 100000 792 481

APC-06-04 5 87.5% 100000 827 523

3 Gage 4

(_)
496

469

422

48O

495

414

456

408

439

452

479

5O4

493

476

491

'437

475
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Table4.3.ResidualstrengthresultsforAPC-2laminates.

Specimen Cooling Rate Normalized Fatigue Stress Fatigue Cycles Residual Strength

(°C/min) Level (%) ksi (MPa)

APC-04-05 10 80 100 54.6 (376)

APC-05-01 l0 80 100 55.4 (382)

APC-07-01 5 80 100 52.6 (363)

APC-03-02 10 80 10000 59.1 (407)

APC-06-02 5 80 10000 63.3 (436)

APC-10-03 1 80 100013 59.5 (410)

APC-03-01 10 80 100000 60.4 (416)

APC-06-05 5 80 100000 61.8 (426)

APC-10-02 1 80 100000 61.2 (422)

APC-04-02 10 87.5 100 54.5 (376)

APC-05-03 10 87.5 100 57.4 (396)

APC- 10-04 1 87.5 100 56.9 (392)

APC-05-05 10 87.5 10000 64.1 (442)

APC-06-03 5 87.5 10000 57.4 (396)

APC-07-04 5 87.5 10000 64.9 (447)

APC-04-04 10 87.5 100000 69.2 (477)

APC-04-04 10 87.5 100000 67.2 (463) .

APC-06-04 5 87.5 100000 68.7 (474)
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Figure 4.7. Cross-ply APC-2 specimens after residual strength testing exhibiting the three different

failure modes.
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4.3 Analysis Techniques

4.3.1 Notched Quasi-Static Strength

A reasonable approach to predicting/explaining the quasi-static strength of notched composite laminates

would be to use the elastic stress concentration factor in conjunction with the unnotched material

strengths. This approach suffers from two shortcomings: it requires that the unnotched strength of the

laminate be known and it also gives overly conservative estimates of the notched strength. To overcome

these difficulties, Reifsnider [28] has suggested applying the average stress criterion of Whitney and

Nuismer [57] on a ply-level basis. Whitney and Nuismer's average stress criterion is given by

1 a+Jo

Oo: Z f
0 a

(4.1)

where o0 is the unnotched strength of the laminate, a is the hole size, oy(x, O) is the stress along the hole

axis, and do is the averaging distance. This averaging distance may be viewed as a process zone over

which the failure takes place. To apply this criterion on a ply-level basis for the [0/9014s laminates, we

proceed in the lollowing manner. First, we calculate the material properties for an equivalent anisotropic

laminate using classical lamination theory (CLT) in conjunction with the laminae properties and the

laminate stacking sequence. Next,.we use Lekhnitskii's [58] solution for an anisotropic plate containing a

hole to evaluate the strain distribution for the anisotropic equivalent laminate when the applied laminate

stress to S. The resulting strain distribution is then substituted back into CLT to calculate the average

stress distribution in the 0 ° plies as follows

1 a+d0

-Gij --_o ! aij°°(x,O)dx (4.2)
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All that remains is the selection of an appropriate failure criterion. For 0 ° plies, we have found that a

maximum stress criterion works well. Therefore, the averaging distance, do, is selected so that when the

applied stress is equal to the failure stress determined experimentally, we have

a+d o

--cr_loo=--dol ! crl oo(x,O)dx = X t (4.3)

where X, is the unidirectional tensile strength in the fiber direction. For the purposes of simplicity and

notation, it has been assumed that the maximum value of this stress occurs along the hole axis (this may

be easily verified). Equation (4.3) may be viewed as the defining equation for do.

The preceding analysis is based upon the assumption that the anisotropic equivalent plate may be used to

represent the composite laminate. To validate whether such an assumption is validate, we can compare

the resulting strain distribution measured using the strip strain gages to that predicted from by

Lekhnitskii's solution. Such a comparison is shown in Figure 4.8 where the Lekhnitskii solution, which

appears as the solid line, has been calculated on the basis of the material properties given in Table 3.1. At

first, the comparison does not appear to be very good. There are two reasonable explanations for such an

occurrence. First of all, the Lekhnitskii solution is for a hole in an infinite anisotropic plate; the situation

here is that of a finite width plate (the total specimen width is only four times the hole diameter). In

addition, the strain gages are not capable of measuring a point strain, but instead average over the gage

section. In order to attempt to compare this measured average strain with the Leknitskii solution, the

Leknitskii solution was averaged over the width of each gage (0.090 inches--2.3 mm). This average

solution value is shown as the dotted line in Figure 4.8. It then becomes apparent that the anisotropic

plate solution may be used, at least as an engineering approximation.

4.3.2 Notched Residual Strength Analysis

When the laminate is fatigue loaded, however, the situation is greatly complicated. As damage such as
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matrix cracking develops, the stiffness of the plies changes. Also, the development of the longitudinal

splits reduces the stress concentration due to the notch by making the hole act more as ellipse than a

circle. In addition, as the laminate is fatigued, the 0° plies begin to accumulate fiber fractures which

lower the remaining strength of the plies. Developing an exact solution for the combined effects in an

exact fashion would be a difficult, if not impossible, proposition. Instead an approximate approach is

taken. This approach involves three steps:

1. Representing the change in off-axis ply stiffnesses (E22 and G_2) due to matrix cracking

2. Redistributing the stresses around the hole to account for the development of the longitudinal

splits and a stress relaxation zone.

3. Calculating the effect of damage accumulation on the remaining strength of the 0 ° plies.

The first two steps were treated in a combined manner using the data from the strip gages. For ease of

analysis, we assume that the normalized values for E12 and G j2 can be represented in the form of

Glz(n) = Ezz(n) - C-(C-1)(1 + t_)exp(-fln) (4.4)

G,2(0)

where n is the number of fatigue cycles and C, cz, and 13are fitting parameters. Such an expression can be

used to take into account the stiffness reduction due to cycle-dependent matrix cracking. Now we need to

account for the stress redistribution due to the presence of the longitudinal splits. This may be

accomplished by representing the hole in the laminate by an "effective" elliptical hole having different

dimensions than the actual hole. Because the splitting extends only in the direction of the applied load,

we assume that the dimension of this hole axis may modified according to
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where bf, D, and p are fitting constants and S,I, is the ultimate strength of the laminate.

(4.5)

The next step is to evaluate the fitting parameters C, ct, [3, by, D, and p. To do so we make use of the strip

gage data. We attempt to fit the measured strain distributions after 100, 10000, and 100000 cycles of

fatigue at the two stress levels to those predicted by the anisotropic plate solution using reduced off-axis

stiffness values and an effective hole size. These fits are accomplished in a least-squares sense by

comparing the predicted average strain across each gage to the measured values, as well as comparing the

calculated total load supported by the section to the global applied load (the equilibrium condition). This

results in an effective hole size and reduced values for the off-axis stiffnesses for each loading condition.

These values are then fit to the forms given in Equations (4.4) and (4.5). The fitting parameters are

subject to two constraints: at no point is the stiffness allowed to increase as a function of applied cycles

nor is the effective hole size allowed to decrease at any point. The results of such a fitting process are

compared to the experimental data for each of the different number of cycles and applied stress level in

Figures 4.9-4.14. The agreement in most cases is good, with the greatest discrepancy occurring for the

10000 cycle data at 87.5% of ultimate strength., Although this process is far from ideal, it possible to

obtain useful estimates of the stress distribution around the hole at any point in the life of the specimen.

Now we address the problem of reduction of residual strength due to the accumulation of fiber fractures.

To calculate these changes in remaining strength, we shall make use of the analysis presented in the

previous chapter. First, for a given applied fatigue load, we use Equations (4.2), (4.4), and (4.5) along

with CLT and the Lekhnitskii solution to calculate the average stress state in the 0° plies. Next we apply
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Figure 4.9. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for specimens fatigued 100 cycles at 80% of the ultimate strength.
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. Figure 4.12. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for specimens fatigued 100 cycles at 87.5% of the ultimate strength.
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a maximum stress failure criterion, so that our failure function, Fa, is given by

-- 0 o

Fa - _

x,
(4.6)

Our normalized characteristic time, "c,for the fatigue process is given by

/-/

2" - (4.7)
N(Fa)

where N may be determined by

( Fa-A,_ I

N = 10 _ff_---" ) (4.8)

and the constants An and Bn for this material are given in Equation (3.18). Equations (4.6)-(4.8) may be

substituted into Equation (3.11) to calculate the remaining strength of the critical element at any point

during the life of the laminate. Ultimate failure of the laminate is predicted at the point which the

normalized remaining strength of the critical element is equal to the value of the failure function in the

critical element.

There is one final step required to relate the remaining strength of the critical element to the remaining

strength of the laminate, Sr. This step is necessary to account for the redistribution of stresses within our

representative volume element. To determine the remaining strength of the laminate (the value that could

be measured experimentally) at any point during its lifetime from the remaining strength of the critical

element, we use the following procedure. First we apply a unit stress to the laminate. Next, we apply

Equation (4.6) to calculate the failure function at this point in the lifetime of the laminate. The remaining

strength of the laminate is then given by
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S (n)= Fr(n)
Fa(n) u,,i,,,r_,,

(4.9)

This approach is correct so long as the failure function varies linear linearly with the applied stress (as is

true for the maximum stress failure function).

The results of such a prediction, along with the experimental data, are shown in Figure 4.15. There are

many interesting trends exhibited due to the three effects which determine the remaining strength of the

laminate. If we first consider the prediction at for the loading at 80% of the ultimate strength we can

understand these effects better. When the fatigue load is first applied, we begin to develop matrix cracks

which reduce the stiffness of the off-axis plies and transfer load to the 0° plies. In addition, we begin to

accumulate fiber fractures in the 0° plies. These two effects work together to decrease the strength of the

laminate. At the same time, the development of the longitudinal splits works to reduce the stress in the 0°

plies for a given applied laminate stress, thereby increasing the laminate strength. The combined effect is

to produce the result seen in Figure 4.15--an initial decrease in remaining strength followed by a

continuing increase in remaining strength.

For the case of'loading at 87.5% of the ultimate strength, the behavior is even more complicated. For this

situation, we see an initial decrease in remaining strength, followed by an increase, followed by a

decrease, and then a subsequent increase in remaining strength. This complicated behavior is due to the

events which control the remaining strength of the laminate all occurring at different rates.
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5. Room Temperature and Elevated Temperature
Characterization of IM7/K3B

All of the specimens used in this chapter consisted of IM7/K3B supplied by NASA Langley Research

center. For purposes of discussion the material will be divided into three categories, or phases. The Phase

I material was used for initial quasi-static baseline mechanical characterization. These specimens were of

three different lay-ups ([0h2, [90h2, and [+4513s) and were designated for room temperature testing and

for testing at 350°F (177°C). All Phase I specimens were tested in the dimensions supplied with the

exception of the [0112 specimens designated for testing at 350°F (177°C). These specimens were supplied

as 1" (2.54 cm) wide coupons, but were cut in half for ease of testing. This resulted in specimens having a

nominal width of 0.48" (1.2 cm). The Phase II material consisted of [0/+4512s specimens containing a

0.25" (0.635 cm) diameter center hole. These specimens were designated for baseline fatigue testing at

room temperature and 350°F (177°C). The Phase III material was supplied in the form of a 12" X 24"

(30.5 cm 61.0 cm) panel having a [-45/0/45/9012s stacking sequence, which was subsequently cut into

forty specimens. The nominal dimensions for all of the specimen types are given in Table 5.1.

After the material arrived at Virginia Tech, each of the specimens was ultrasonically C-scanned to

determine its integrity. All specimens were determined to be defect free (within the limits of the

technique) with the exception of a number of the [0/+4512s specimens. Imperfections were noted in lhe C-

scans and were also visible on the specimen surface. However, due to a shortage of material, these

specimens were tested. Subsequent to the ultrasonic C-scan, the specimens were placed in an oven and

allowed to soak for 120 hours at 120°C. The specimens were then allowed to cool to room temperature at

a rate of 0.1°C per minute before being removed from the oven. This process was intended to serve two
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Table 5.1. Nominal specimen dimensions for IM7/K3B material.

Phase I Specimens

Phase II Specimens

Phase III Specimens

Lay-Up

[0],2

[90112

[--4513s

Notched [01+4512s

Unnotched

[45/0/-45/9012s

Notched

[45/0/-45/9012s

Room Temperature

Specimens
0.5" x 6.0"

(12.7 mm x 152 mm)

1.0" x 6.0"

(25.4 mm x 152 mm)

0.5" x 6.0"

(12.7 mm x 152 mm)

1.5" x 6.0"

(38.1 mmx 152 mm)

0.25" (6.35 mm)
Diameter Center Hole

1.0" x 6.0"

(25.4 mm x 152 mm)

1.0" x 6.0"

(25.4 mm x 152 mm)

0.25" (6.35 mm)
Diameter Center Hole

Elevated Temperature

(350°F--177°C)

Specimens
0.48" x 8.0"

(12.2 mm x 203 mm)

1.0" x 8.0"

(25.4 mm x 203 mm)

1.0" x 8.0"

(25.4 mm x 203 mm)

1.5" x 8.0"

(38.1 mm x 203 mm)

0.25" (6.35 mm)
Diameter Center Hole

1.0" x 6.0"

(25.4 mm x 152 mm)

1.0" x 6.0"

(25.4 mrrrx 152 mm)
0.25" (6.35 mm)

Diameter Center Hole
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purposes: to remove any moisture that might have been absorbed during the C-scanning process and also

to give the specimens as nearly an identical thermal history as possible.

5.1 Phase I Testing

5.1.1 Room Temperature Testing

5.1.1.1 Unnotched [0112 Specimens

These specimens were used to obtain 0° tensile strength (Xt) and stiffness (Ell) values at room

temperature. End tabs--l.5" (38.1ram) long, 0.5" (12.7 ram) wide, and 0.1" (2.5ram) thick--formed

from high-pressure glass/epoxy cross-plied laminates, were adhered to each specimen using 3M Scotch-

Weld DP-420 (a high toughness, high peel and shear strength) adhesive. Prior to the bonding, the end

tabs were sandblasted and the specimen ends were lightly sanded using 400 grit sandpaper to promote

adhesion. A bondline of 0.007" (0.18 mm) was maintained by placing enameled wires in the adhesive.

The adhesive was then cured at 50°C for 2 hours. After removing the specimens from the oven, one strain

gage (Micro-Measurements CEA-06-250UN-350) was applied to each face of the specimen and was

aligned with the loading axis using Micro-Measurements M-Bond 200 adhesive. All of the room

temperature 0 ° tensile tests were performed in a 20 kip, electro-hydraulic, servo-controlled load frame

with hydraulic wedge grips. To ensure that the gage length remained constant during from one specimen

to the next, a number of controls were employed. First of all, a marks was made on each specimen edge

1.25" (31.8 mm) from the tabbed end of the specimen using a lead pencil. Then a second mark was made

on the specimen 3.5" (88.9 ram) from the first mark. The specimen was then aligned in the load frame

using a bead level so that the axis of loading corresponded with the specimen axis. Each of the pencil

marks was aligned with the end of the grips, providing what was hoped to be a 3.5" (88.9 ram) gage

section tbr each specimen. This was verified by using the LVDT readout of the load frame which had

been zeroed at the gage length of the first specimen. In all cases, the LVDT readout was less than 0.05"

(1.27 ram) when the specimen was gripped using a grip pressure of 1200 psi. The specimens were then
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loaded to failure in a load-controlled test at a loading rate of 400 pounds per second. This relatively high

rate of loading (corresponding to a stress rate of approximately 13 ksi per second) was chosen for two

reasons. First of all, the material properties were to ultimately be used as inputs for the modeling of the

10 Hz fatigue behavior of laminated materials. Secondly, it was desirable to be able to make comparisons

between the material behavior at room temperature and at the elevated temperature of 350°F (177°C),

where viscoelastic effects could become important. The rate of loading chosen was selected to achieve

specimen failures within approximately 30 seconds of initial loading.

During the test, the load and stroke signal outputs from the load frame as well as the two strain gage

outputs were monitored using a computer controlled data acquisition system. Data were collected at a rate

of 10 samples per channel per second. These data were saved as raw voltages for subsequent analysis by a

spreadsheet. A regression analysis was performed on the resulting stress strain curves (one curve for each

gage) up to a strain level of 0.5%. The peak detector on the load frame's digital display was used to

capture the highest load achieved by the specimen during the test. This value was converted to a peak

stress, which allowed the material strength to be well characterized.

5.1.1.2 Unnotched [90112 Specimens

These specimens were used to obtain 90 ° tensile strength (Yt) and stiffness (E22) values at room

temperature. Specimen preparations were identical to those employed for the room temperature [0]t_,

specimens. The specimens were then placed in the load frame in an identical manner to that described in

the previous section, except that the grip pressure was 200 psi (the minimum allowed by the machine).

The tests were then conducted in load control at a loading rate of 10 pounds per second. This loading rate

was chosen for the same reasons detailed in the previous discussion. An identical procedure for data

collection and reduction to that described in the previous section was followed.
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5.1.1.3 Unnotched [-+4513s Specimens

These specimens were used in an attempt to obtain lamina values for the shear strength (S) and stiffness

(G12) values at room temperature. The ASTM standardized method D-3518 [59] contains the following

caution: "Although this test method can establish shear stress strain response well into the nonlinear

region, the ultimate stress and strain values so obtaincd should be evaluated with caution." The standard

suggests that such a test results in lower values for the material shcar strength than would be obtained

from a tube torsion test. Thus, the results from this test should result in a conservative estimate of the

material properties.

An identical tabbing procedure was employed for the [+4513s specimens as for the [0112 room temperature

specimens. Strain gages were applied in a different manner, however. Two gages (Micro-Measurements

CEA-06-125UW-350) were adhered to each side of the specimen oriented with the specimen's principal

axes (a total of four gages per specimen) using the M-Bond 200 adhesive. The gages were then connected

in a bridge configuration as shown in Figure 5.1. When connected in this manner, the bridge output is

then proportional 7t2, where

Yl2 = _'x -£_, (5.1)

and E_ is the strain experienced by the specimen in the longitudinal direction, and Ey is the strain

experienced by the specimen in the transverse direction. The shear stress, x_2, may then be determined by

P
"t'12 =- (5.2)

2wt

where P is the applied load, w is the specimen width, and t is the specimen thickness. This wiring

configuration has the advantage of being temperature compensated.
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Figure 5.1. Bridge wiring for +/- 45 tensile specimens.
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The specimens were placed in the load frame and secured with a grip pressure of 1000 psi. The

specimens were then loaded to failure at a rate of 100 pounds per second. An identical procedure for data

collection to that described in the section on room temperature testing of [0112 laminates was followed.

The data were then analyzed according to Equations (5.1) and (5.2) so that a shear stress versus shear

strain curve was obtained. The shear modulus was then calculated from the linear regression of this curve

up to a shear strain level of 0.2%.

5.1.2 Elevated Temperature Testing

5.1.2.1 Unnotched [0112 Specimens

These specimens were used to obtain 0 ° tensile strength (Xt) and stiffness (Ell) values at 350°F (177°C).

End tabs--l.5" (38.1mm) long, 0.5" (12.7 mm) wide, and 0.1" (2.5mm) thick--formed from high-

pressure glass/epoxy cross-plied laminates, were adhered to each specimen using 3M Scotch-Weld DP-

420 adhesive, an identical procedure to that used for the [0112 room temperature specimens. Prior to the

bonding, the end tabs were sandblasted and the specimen end were lightly sanded using 400 grit

sandpaper to promote adhesion. A bondline of 0.007" (0.18 mm) was maintained by placing wires in the

bondline. The adhesive was then cured at 50°C for 2 hours. After removing the specimens from the

oven, one strain gage (Micro-Measurements WK-06-250BG-350) was applied to each face of the

specimen aligned with the loading axis using Micro-Measurements M-Bond 600 adhesive. The adhesive

was cured according to the manufacturer's instructions for 2 hours at 120°C. Lead wires were attached to

the gages' leads with high-temperature solder. Each of the gages was then wired in a full-bridge

configuration and a shunt calibration performed. Temperature compensation was achieved by means of

thermal dummies located inside the oven adjacent to the specimen. All of the elevated temperature 0 °

tensile tests were performed in a 20 kip, electro-hydraulic, servo-controlled load frame with hydraulic

wedge grips. The elevated temperature was achieved in a convection oven located between the grips. In

initial tests, the specimen temperature was monitored at three locations on the specimen surface well as at
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onelocationin theoven.All readingswerefoundtobewithin4°F(2°C)of eachother.Therefore,in

subsequenttestsonlytheinternaloventemperaturewasmonitored.To ensurethatthegagelength

remainedconstantduringfromonespecimentothenext,thecontrolsusedfortheroomtemperaturetests

wererepeated.Thespecimenswerethenloadedtofailureinaload-controlledtestataloadingrateof400

poundspersecondusingagrippressureof1200psi(identicaltotheroomtemperaturetests).Subsequent

dataanalysiswasidenticaltothatutilizedfortheroomtemperaturetests.

5.1.2.2 Unnotched [9011z Specimens

These specimens were used to obtain 90 ° tensile strength (Yt) and stiffness (E22) values at elevated

temperature. Specimen preparations were identical to those employed for the elevated temperature [0]_2

specimens with one major exception: no end tabs were used. The decision not to used end tabs was based

on two factors. The first was that gage section failures were easily obtained in the room temperature

[90]12 tests. In addition, it was felt that at the elevated temperature the specimens would be even more

likely to fail within the gage section. Sandpaper was placed on the ends of the specimen in a similar

manner to that used for the [0/+4512s tests at room temperature. The specimens were then placed in the

load frame in an identical manner to that described in the previous section, except that the grip pressure

was 200 psi (the minimum allowed by the machine). The tests were then conducted in load control at a

loading rate of 10 pounds per second.

5.1.2.3 Unnotched [--/-45]s_ Specimens

These specimens were used in an attempt to obtain lamina values for the shear strength (S) and stiffness

(GI2) values at elevated temperature. Specimens were end tabbed in the manner described previously. A

pair of gages (Micro-Measurements WK-06-125TM-350) were adhered to each side of the specimen

oriented with the specimen's principal axes (a total of four gages per specimen) using the M-Bond 600

adhesive. The gages were then wired in a bridge configuration in a manner illustrated by Figure 5.1.
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The specimens were placed in the load frame and secured with a grip pressure of 1000 psi and then loaded

to failure at a rate of 100 pounds per second. An identical procedure for data collection to that described

in the section on room temperature testing of [Oh2 laminates was followed. The data were then analyzed

according to Equations (5.1) and (5.2). so that a shear stress versus shear strain curve was obtained. The

shear modulus was then calculated from the linear regression of this curve up to a shear strain level of

0.2%.

5.2 Phase II Testing

5.2.1 Room Temperature Testing of Notched [0/+45]zs Specimens

5.2.1.1 Quasi-Static Testing

These specimens did not require the end tabs employed in the other room temperature tests. Instead, two

layers of 100 grit sandpaper were wrapped lengthwise over each specimen end with the grit side inward.

The sandpaper was held in place using a narrow strip of masking tape. In addition, aluminum V-notched

extensometer tabs were adhered 1" (2.54 cm) apart, centered with respect to the hole, using as a thin layer

of silicone rubber. The knife edges of the extensometer were then placed in the V-notches, and the

extensometer secured to the specimen using rubber bands. The strain readings obtained in this manner

could then be used in a semi-quantitative manner to monitor damage. The specimens were aligned in the

load frame using a level so that 1.25" (3.18 cm) was in each grip and then gripped using a pressure of

2000 psi (14 MPa). The specimens were then loaded to failure at a rate of 500 pounds per second.

During the loading process, the load signal, extensometer strain signal, and stroke signal were collected at

a rate of 10 points per channel per second. The maximum load experienced by the specimen was

determined using the peak detector on the digital display of the load frame.

5.2.1.2 Fatigue Testing

These specimens were prepared in an identical manner to those which were used for quasi-static testing.

The fatigue tests were performed in load control at 10 Hz (sinusoidal waveform) with an R-ratio of 0.1.

Two fixed percentages of the ultimate strength were employed: 70% and 80%. During the course of these
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tests,maximum and minimum values of the load, actuator displacement, an extensometer strain were

recorded in an identical manner to that used for the APC-2 fatigue specimens. Initial tests at the two load

levels revealed that no failures could be expected within 1000000 cycles; therefore subsequent tests were

interrupted for x-ray damage analysis, strip strain gage measurements (conducted in the same manner as

those on the APC-2 specimens), and residual strength testing.

5.2.2 Elevated Temperature (350°F--177°C) Testing of Notched [0/+4512s

Specimens

5.2.2.1 Quasi-Static Testing

These specimens were prepared in an identical fashion to those used in the room temperature tests with

one exception--no extensometer tabs were applied to the specimen (no extensometer measurements were

made). The specimens were aligned in the load frame using a level so that 1.25" (3.18 cm) was in each

grip and then gripped using a pressure of 2000 psi (14 MPa). The specimens were then loaded to failure

at a rate of 500 pounds per second. During the loading process, the load signal and stroke signal were

collected at a rate of 10 points per channel per second. The maximum load experienced by the specimen

was determined using the peak detector on the digital display of the load frame.

5.2.2.2 Fatigue Testing

These specimens were prepared in an identical manner to those which were used for quasi-static testing.

The fatigue tests were performed in load control at 10 Hz (sinusoidal waveform) with an R-ratio of 0.1.

Q

Two fixed percentages of the ultimate strength were employed: 70% and 80%. During the course of these

tests, maximum and minimum values of the load and actuator displacement were recorded in an identical

manner to that used for the room temperature fatigue specimens. Initial tests at the two load levels

revealed that no failures could be expected within 250000 cycles; therefore subsequent tests were

interrupted for x-ray damage analysis, strip strain gage measurements, and residual strength testing.
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5.3 Phase III Testing of Unnotched and Notched [45/0/-45/9012s
Specimens

5.3.1 Quasi-Static Testing

Testing of these specimens proceeded along much the same lines as that of the Phase II specimens. The

room temperature specimens were prepared by placing the V-notched extensometer tabs on the surface of

the specimen and by securing two layers of 100 grit sandpaper on each end of the specimen with masking

tape. The elevated temperature specimens were prepared in an identical fashion with the exception of the

extensometer tabs. The specimens were aligned in the load frame so that 1" (2.54 cm) was in each grip

and then gripped using a pressure of 1600 psi (11 MPa). The tests were then conducted in load control at

a loading rate of 500 pounds per second. Data were recorded using the computer controlled data

acquisition system.

5.3.2 Fatigue Testing

The specimens were prepared and gripped in a manner identical to the quasi-static specimens. The

fatigue tests were then performed at 10 Hz in load control (R = 0. I) at two fixed percentages of the

ultimate strength for each of the specimen types (notched and unnotched). The unnotched specimens

were fatigued at 65% and 70% of their ultimate strengths, while the notched specimens were fatigued at

70% and 80% of their ultimate strengths. During the course of the tests, data were recorded in a manner

identical to that employed for the Phase II fatigue tests. In addition, real-time measurements were madc

of the complex dynamic stiffness using a dynamic signal analyzer.

5.4 Experimental Results

5.4.1 Phase I Tests

The results from these tests are summarized in Table 5.2. The discussion which follows will attempt to

point out important features which were observed during the course of the experimental investigation.
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5.4.1.1 Unnotched [0112 Specimens

Photographs of representative failed room temperature and elevated temperature [0112 specimens are

shown in Figure 5.2. In addition, representative stress-strain curves for these specimens at both

temperatures are shown in Figure 5.3. One interesting feature of the experimental results for this loading

condition is that the measured modulus at the elevated temperature is greater than that which was

measured at room temperature. Such behavior is somewhat counter-intuitive. As the temperature is

increased, we would expect the matrix stiffness to decrease, and therefore would expect to scc a

corresponding decrease in the composite stiffness. However, such is not the case. There are three

plausible explanations for the behavior. One is that the differences are duc solely to the statistical scatter

in the data and are not really significant. A second possible explanation is that the differences are due to

experimental error, particularly in the strain measurements at elevated temperature (as is evidenced by the

increase in the scatter at the elevated temperature). However, every effort was made to minimize such

errors, including the use of temperature compensation gages, as well as making use of back-to-back gages

on each specimen. The third possible explanation is that the changes in modulus are evidence of some

underlying change in the material behavior. There is some (albeit limited) support for such a

conclusion--similar behavior has been observed by other researchers at elevated temperaturc (see, for

example, the work of Fisher et al. [60]).

5.4.1.2 Unnotched [90112 Specimens

Photographs of representative failed room temperature and elevated temperature [90]12 specimens are

shown in Figure 5.4. In addition, representative stress-strain curves for these specimens at both

temperatures arc shown in Figure 5.5. In the case of these specimens, there were no surprises in the

experimental behavior. As the temperature was increased, there was a decrease in the transverse stiffness

and strength corresponding to the changes in the matrix properties at these temperatures.
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Table 5.2. Results of Phase I tests on IM7/K3B laminates at room temperature and 350 °F (177°C).

Lay-up Property

Ell t

Room Temperature
24.3-+0.3 msi

(167+_2 GPa)

350°F -177°C

25.7+1.5 msi

(177+10 GPa)

392+18 ksi 324+27 ksi

[0]12 X, (2700-&_120 MPa) (2230!-_190 MPa)

E_lt 1.46_'_+0.05% 1.13_+0.10%

1.38_+0.03 msi 1.27_+0.02 msi

E22 t (9.51_+0.18 GPa) (8.76_+0.14 GPa)

8.64_+1.18 ksi 5.15_+0.42 ksi

[90]t2 Yt (59.6+8.2 MPa) (35.5+2.9 MPa)

E22 t 0.622_+0.088% 0.408_+0.035%

0.721_+0.043 msi 0.610-&-0.039 msi

[±4513s G_2 (4.97_+0.30 GPa) (4.21_+0.27 GPa)

26.4_+0.6 ksi 17.1_+0.5 ksi

S (182+5 MPa) (118+4 MPa)
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Figure 5.2. Failed [0]12 tensile specimens from room temperature (left) and 350°F (177°C) tests (right).
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Figure 5.3. Stress-strain curves for [0] 12 laminates of IMT/K3B at room temperature and 350°F (177°C).
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Figure 5.4. Failed [90] 12tensile specimens from room temperature (left) and 350°F (177°C) tests (right).
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Figure 5.5. Stress-strain curves for [90] _2 laminates of IM7/K3B at room temperature and 350°F (177°C).
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5.4.1.3 Unnotched [+4513s Specimens

Photographs of representative failed room temperature and elevated temperature [+4513s specimens are

shown in Figure 5.6. These failures were characterized by substantial necking and scissoring, as is to be

expected from the test. In addition, representative stress-strain curves for these specimens at both

temperatures are shown in Figure 5.7. It was not possible to determine the strain-to-failure of these

specimens because failure of the strain gages occurred before final failure of the specimens.

5.4.2 Phase II Tests

5.4.2.1 Quasi-Static Tests

Only two room temperature and two elevated temperature specimens were available for the quasi-static

tests. The two strength values obtained for the room temperature specimens were 80.3 ksi (554 MPa) and

75.5 ksi (521 MPa), while the two elevated temperature strength values were 77.0 ksi (531 MPa) and 76.2

ksi (525 MPa). Representative specimens from the room temperature and elevated temperature tests are

shown in Figure 5.8. In the case of the elevated temperature specimens, there was a great deal of

delamination noted around the hole section for both specimens. This delamination appeared to involve

only the surface 0 ° plies. The stress-strain plots from the room temperature tests are shown in Figure 5.9.

The strain information for this plot is based upon the average strain measured across the hole, so it

combines material behavior as well as geometry effects. Stress-strain plots for the elevated temperature

specimens based upo n the stroke measurements are shown in Figure 5.10.

5.4.2.2 Fatigue Tests

Characteristic stiffness curves from the room temperature specimens as a function of number of fatigue

cycles and load level based upon the extensometer measurements are shown in Figure 5.11. The stiffness

reduction curves from the extensometer are based on strain measurements taken over the hole section.

Such measurements include both the effects of the stiffness reduction due to the cracking which occurs in

the off-axis plies, as well as geometry effects in a local region. Stiffness reductions based upon the stroke
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Figure 5.6. Failed [-+4513s tensile specimens from room temperature (left) and 350°F (177°C) tests (right).
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Figure 5.7. Shear stress-shear strain curves for [±45] 3s laminates of IM7/K3B at room temperature and
350°F (177°C).

Specimen failure does not occur at the final strain point shown in the plots.
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Figure 5.8. Failed notched [0/+451zs tensile specimens from room temperature (left) and 350°F (177°C)
(right) tests.
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Figure 5.9. Stress-strain curves based on extensometer measurements for room temperature [0/__.45] 2s

IM7/K3B laminates containing a center hole.
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Figure 5.11. Fatigue stiffness reduction curves based on extensometer measurements at room temperature
for [0/±45]as IM7/K3B laminates containing a center hole.
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measurements for the room temperature tests are shown in Figure 5.12. These stiffness reductions based

upon the stroke measurements give a integrated material response over the gage section (3.5 inches--8.9

cm). Representative stiffness reduction curves for the specimens tests at 350°F (177°C) are shown in

Figure 5.13, based upon the stroke measurements made over a gage length of 4.5 inches (11.4 cm). Both

the room temperature and elevated temperature specimens were characterized by delamination of the

surface 0 ° plies above the hole section, parallel to the axis of the applied load.

5.4.2.3 Penetrant Enhanced Radiography

This method proved to be a useful means of identical the processes of damage development during the

fatigue process. Radiographs of the specimens fatigued at room temperature at 70% and 80% of ultimate

tensile strength are shown in Figure 5.14 and Figure 5.15, respectively. If we first consider the

radiographs of the specimens fatigued at 70% of ultimate strength, we notice that the damage

development begins with the matrix cracks in the +45 ° degree plies around the hole. In addition, the

specimen which has been fatigued 10000 cycles at this load level has begun to develop the delaminations

of the 0 ° plies above the hole section. This delamination continues to grow as the number of cycles

increases, until it passes the location of the extensometer tabs. The pattern for the specimens fatigued at

80% of ultimate strength is similar, although the rate of development of the matrix cracking and the rate

of delamination growth is greater.

Radiographs of the specimens fatigued at 350°F (177°C) at 70% and 80% of ultimate tensile strength are

shown in Figure 5.16 and Figure 5.17, respectively. These radiographs show a similar pattern of damage

development to that observed in the room temperature specimens, although the rates of development of the

matrix cracking and the delaminations are greater.
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Figure 5.12. Fatigue stiffness reduction curves based on stroke measurements at room temperature for
[0/+-4512s IM7/K3B laminates containing a center hole.
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Figure 5.14. Penetrant-enhanced radiographs of [0]+4512s laminates of IM7/K3B fatigued at room
temperature at 70% of ultimate tensile strength after 10000 cycles (left), 260000 cycles (center) and
1430515 cycles (right).

Room Temperature and Elevated Temperature Characterization of IM7/K3B 147



Figure 5.15. Penetrant-enhanced radiographs of [0/+4512s laminates of IM7/K3B fatigued at room

temperature at 80% of ultimate tensile strength after 10000 cycles (left), 280000 cycles (center) and
1560401 cycles (right).

Room Temperature and Elevated Temperature Characterization of IM7/K3B 148



Figure 5.16. Penetrant-enhanced radiographs of [0/-+4512s laminates of IM7/K3B fatigued at 350°F

(177°C) at 70% of ultimate tensile strength after 10000 cycles (left) and 224500 cycles (right).
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Figure 5.17. Penetrant-enhanced radiographs of [0/±4512s laminates of IM7/K3B fatigued at 350°F
(177°C) at 80% of ultimate tensile strength after 10000 cycles (left), 75000 cycles (center) and 224500
cycles (right).

Room Temperature and Elevated Temperature Characterization of IM7/K3B 150



5.4.2.4 Residual Strength Tests and Strip Strain Gage Measurements

Subsequent to the radiography process, measurements of the strain distribution around the hole after

fatigue were taken in a manner identical to that employed for the APC-2 specimens. In the case of the

elevated temperature specimens, it was not possible to make the strain distribution measurements at the

test temperature (due to a lack of temperature compensation for the strain gages). Rather, it was necessary

to make those measurements at room temperature. After these measurements were made, they were fit to

the Lekhnitskii solution in a manner identical to that described in Section 4.3.2. The results of such a

fitting process are shown in Figures 5.18-5.25.

After the strip strain gage measurements were made, residual strength tests were conducted. The results

of these tests are summarized in Table 5.3. The room temperature specimens exhibit a behavior similar to

that exhibited by the APC-2 specimens. There is an initial decrease in the laminate level residual strength

initially, followed by a subsequent increase in the remaining strength. In the case of the elevated

temperature specimens, no initial decrease in the residual strength is observed. In addition, there is one

interesting behavior to be noted: at the highest number of cycles tested (224500), the remaining strength

of the specimen fatigued at 80% of ultimate strength is greater than that of the specimen fatigued at 70%

of ultimate strength. This behavior is not something that we would expect beforehand; we would expect

the higher stress level to give us more damage and hence a lower residual strength. This behavior is not

exhibited by the room temperature specimens.

5.4.2.5 Residual Strength Predictions

Using the results of the strip gage fits in conjunction with the techniques presented in Chapters 3 and 4,

we are now ready to make predictions for the room temperature remaining strength of the Phase I

material. The results of such a prediction are shown in Figure 5.26, along with the experimental data.
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Figure 5.18. Comparison of predicted and measured axial strain as a function of position along the hole

axis before fatigue.
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Figure 5.19. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 10000 cycles at room temperature at 70% of ultimate strength.
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Figure 5.20. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 260000 cycles at room temperature at 70% of ultimate strength.

Room Temperature and Elevated Temperature Characterization of IM7/K3B 154



1600 [
"_ 1200

L_

l/)
O
I...._

.9
E

e-
.m

800

400

0
0.(

, I J I , l ,

1.0 2.0 3.0 4.0
x/a

Lekhnitskii

Fit

N-RT-08
<}

Lekhnitskii

Average

Figure 5.21. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 10000 cycles at room temperature at 80% of ultimate strength.
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Figure 5.22. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 280000 cycles at room temperature at 80% of ultimate strength,
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Figure 5.23. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 10000 cycles at 350°F (177°C) at 70% of ultimate strength.
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Figure 5.24. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 10000 cycles at 350°F (177°C) at 80% of ultimate strength.
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Figure 5.25. Comparison between the strip-strain gage measurements and the predictions based on the

effective hole size for a specimen fatigued 10000 cycles at 350°F (177°C) at 80% of ultimate strength.
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Table 5.3. Residual strength results for [0/±45] 2_ IM7/K3B laminates containing a center hole.

Specimen

N-RT-03

N-RT-01

N-RT-05

N-RT-08

N-RT-07

N-RT-04

N-350F-03

N-350F-05

N-350F-04

Test

Temperature
Room

Room

Room

Room

Normalized Fatigue Stress

Level (%)

Fatigue Cycles Residual Strength

ksi (MPa)

70 10000 74.2 (512)

70

70

260000

1430515

100008O

84.9(585)

105(723)

72.6 (501)
Room

Room

350°F(177°C)

350°F(177°C)

350°F(177°C)

8O

80

7O

7O

8O

28000

1560401

10000

224500

10000

94.3(650)

94.4 (651)

83.7 (577)

90.7 (625)

85.8 (591)

N-350F-01 350°F (177°C) 80 75000 98.8 (681)

N-350F-01 350°F (177°C) 80 224500 104(715)
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These features include the initial decrease followed by an increase in the remaining strength of the

laminates fatigued at 80% of the ultimate strength. The model is unable to predict the initial decrease in

the remaining strength of the laminates fatigued at 70% of the ultimate strength, although it does do a

reasonable job of recovering the long-term behavior.

The remaining strength prediction at 350°F (177°C) requires additional information--the viscoelastic

behavior of the off-axis plies at temperature. To include such an effect, the stress relaxation modulus of a

[:_4513s laminate was measured at 350°F (177°C). This data were then fit to the same functional form

used to represent the change in the off-axis stiffness values due to fatigue behavior:

= C-(C-1)(1 + at)exp(-/3t)
e(0)

(5.3)

where t is the total elapsed time. Such a fit is shown in Figure 5.27. Using this information, it is then

possible to make predictions of the residual strength of the [0/±4512s laminates at 350°F (177°C). Such

predictions are shown in Figure 5.28. The agreement is quite good, and the model is able to predict that

the remaining strength of the specimens fatigue at 80% of ultimate strength is greater than those fatigued

at 70% of ultimate strength.

5.4.3 Phase III Tests

5.4.3.1 Quasi-Static Tests

Only two room temperature and two elevated temperature specimens were available for the unnotched and

notched quasi-static tests. The two strength values obtained for the unnotched room temperature

specimens were 146.4 ksi (1010 MPa) and 140.9 ksi (971 MPa), while the two strength values obtained

for the unnotched elevated temperature specimens were 132.6 ksi (914 MPa) and 124.8 ksi (860 MPa).
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Representative stress-strain curves for the room temperature tests are shown in Figures 5.29 and 5.30, and

those for the elevated temperature tests are shown in Figure 5.31. The two strength values obtained for

the notched room temperature specimens were 62.2 ksi (429 MPa) and 60.8 ksi (419 MPa), while the two

strength values obtained for the notched elevated temperature specimens were 59.9 ksi (413 MPa) and

59.0 ksi (407 MPa). Representative stress-strain curves for the tests are shown in Figures 5.32 and 5.33,

and for the elevated temperature tests in Figure 5.34. Because the room temperature and elevated

temperature specimens have identical gage lengths, it is possible to make direct comparisons between the

room temperature data and the elevated temperature data (i.e. Figure 5.30 may be compared to Figure

5.31 and Figure 5.33 may be compared to Figure 5.34). From these data, we can see why it way necessary

to use the average stress criterion given by Equation (4.3) to determine the strength of the laminates

containing a hole. If we had used the elastic stress concentration for the quasi-isotropic laminate (k=3.0),

we would have estimated the strength of the notched room temperature laminate to be approximately 48

ksi--an error of over 25%.

5.4.3.2 Fatigue Tests

During the course of the fatigue tests of the Phase III materials, real-time measurements were made of the

storage modulus and the phase lag based upon the load and the stroke signal for the specimens. Elahi et

al. [61] have published work which details the development of this scheme for use with composite

materials. The technique is essentially a Dynamic Mechanical Analysis (DMA) on a full-scale (rather

than reduced) specimen. In the case of the elevated temperature tests, it offers the advantage of being a

totally non-contact measurement. As such, it was hoped that the test could shed light on difference in

material behavior at room temperature and at 350°F (177°C).

As this technique is still under development, and is being continually refined, most of the results will be

confined to the presentation of the data itself. We begin by considering the room temperature fatigue of
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Figure 5.29. Representative stress-strain curve based on extensometer measurements for room

temperature tests of [45/0/-45/9012_ IM7/K3B laminates without a center hole.
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Figure 5.30. Representative stress-strain curve based on stroke measurements for room temperature tests

[45/0/-45/9012_ IM7/K3B laminates without a center hole.
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[45/0/-45/9012_ IM7/K3B laminates without a center hole.
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Figure 5.32. Representative stress-strain curve based on extensometer measurements for room

temperature tests of [45/0/-45/9012s IM7/K3B laminates with a center hole.

Room Temperature and Elevated Temperature Characterization of IM7/K3B 169



700(_

60000

500130

 , ooo

20000

1013130¸

O

0.0130

t I t I I

0.002 0.004 0.006 0.008 0.010 0.012

Ave'Eje Slrain
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of [45/0/-45/9012s IM7/K3B laminates with a center hole.
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the unnotched [45/0/-45/9012_ specimens. The dynamic storage modulus and phase lag for those

specimens which were fatigued at 65% of ultimate strength are shown in Figure 5.35 and Figure 5.36,

respectively. Those specimens which failed during the course of the fatigue test have the number of cycles

to failure noted, while those specimens which had the fatigue tests interrupted are labeled with the number

of cycles at which this interruption occurred. Similar plots for those specimens which were fatigued at

70% of ultimate strength are shown in Figure 5.37 and Figure 5.38. If we compare the results in Figure

5.35 and Figure 5.37, we see that there is little difference in the dynamic storage modulus as a function of

cycles at the two load levels. However, if we compare the results in Figure 5.36 and Figure 5.38, we see

that there is almost always a greater phase lag as a function of cycles, suggestion a greater rate of

dissipation of energy.

We next consider the fatigue of the unnotched [45/0/-45/9012s specimens at 350°F (177°C). The dynamic

storage modulus and phase lag for those specimens which were fatigued at 65% of ultimate strength are

shown in Figure 5.39 and Figure 5.40, respectively. Similar plots for those specimens which were

fatigued at 70% of ultimate strength are shown in Figure 5.4l and Figure 5.42. In the case of the elevated

temperature specimens there is no apparent difference in either the storage modulus or the phase lag

between the two load levels. However, there is a greater phase lag than was observed in the room

temperature specimens, suggesting a greater rate of dissipation of energy. This is not surprising in view

of the viscoelastic nature of the matrix material, which dissipates more energy under dynamic loading as

the temperature approaches its glass transition temperature (approximately 245°C for K3B). One feature

of interest is that in all cases the data appeared to be very reproducible.

Now we may consider the response of the notched [45/0/-45/9012s specimens at room temperature. The

dynamic storage modulus and phase lag for those specimens which were fatigued at 70% of ultimate
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Figure 5.35. Normalized dynamic storage modulus measurements for room temperature fatigue tests at
65% of ultimate strength for [45/0/-45/90] zs IM7/K3B laminates without a center hole.
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Figure 5.36. Phase lag measurements for room temperature fatigue tests at 65% of ultimate strength for
[45/0/-45/9012_ IM7/K3B laminates without a center hole.
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Figure 5.40. Phase lag measurements for room temperature fatigue tests at 65% of ultimate strength for
[45/0/-45/9012s IM7/K3B laminates without a center hole.

Room Temperature and Elevated Temperature Characterization of IM7/K3B 178



1.10

1.05

100

'10
0

.=
a_

N

E
_. 0.90.

(185

_80 I I I I I I

1000 2OOO 3OOO 4O30 5OO0 60O0

[-- LF_U-14 (Stcp 3500) - - - I.-RC-U-13 (Stop 5200) ...... !.-F:_-U-IO (Fail6876) .... LRC-U-20 (Fail6968"1[

70OO

Figure 5.41. Normalized dynamic storage modulus measurements for 350°F (177°C) fatigue tests at 70%
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strengthareshowninFigure5.43andFigure5.44,respectively.Similarplotsforthosespecimenswhich

werefatiguedat80%ofultimatestrengthatroomtemperatureareshowninFigure5.45andFigure5.46.

In thiscasetherepeatabilityisnotasgoodasit wasfortheunnotchedspecimens.SpecimenLRC-N-11

whichwasfatiguedat70%ofultimatestrength,andspecimenLRC-N-19 which was fatigued at 80% of

ultimate strength have behaviors which are different from the other specimens which were fatigued at

corresponding load levels. No explanation for this behavior is available at the present time.

Finally, we may consider the behavior of the notched [45/0/-45/9012s specimens which were fatigued at

350°F (177°C). The dynamic storage modulus and phase lag for those specimens which were fatigued at

70% of ultimate strength are shown in Figure 5.47 and Figure 5.48, respectively. Corresponding plots for

those specimens which were fatigued at 80% of ultimate strength at 350°F (177°C) are shown in Figure

5.49 and Figure 5.50. Once again, there is one specimen (LRC-N-4--fatigued at 70% of ultimate

strength) whose behavior differs from the other specimens of its type.

5.4.3.3 Penetrant Enhanced Radiography

Radiographs of the unnotched specimens fatigued at room temperature at 65% and 70% of ultimate tensile

strength are shown in Figure 5.51 and Figure 5.52, respectively. If we first consider the radiographs of

the specimens fatigued at 65% of ultimate strength, we notice that the damage development begins with

the matrix cracks in the all the plies. In the specimen which was stopped after 10000 cycles, we may see

the beginnings of the edge delamination. This delamination continues to grow inward as the number of

cycles increases, as can be see in the specimen which was stopped after 20000 cycles. Only a single

specimen fatigued at 70% of ultimate strength was stopped belore failure occurred. The radiograph of this

specimen is shown in Figure 5.52 aRer 10000 cycles. The pattern of damage development is similar to

those specimens which were fatigued at 65% of ultimate strength, although the delamination growth is

more advanced than in the specimen which was fatigued 10000 cycles at 65% of ultimate strength.
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Figure 5.43. Normalized dynamic storage modulus measurements for room temperature fatigue tests at

70% of ultimate strength for [45/0/-45/90] 2_IM7/K3B laminates with a center hole.
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Figure 5.44. Phase lag measurements for room temperature fatigue tests at 70% of ultimate strength for
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Figure 5.46. Phase lag measurements for room temperature fatigue tests at 80% of ultimate strength for
[45/0/-45/9012_ IM7/K3B laminates with a center hole.
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Figure 5.47. Normalized dynamic storage modulus measurements for 350°F (177°C) fatigue tests at 70%
of ultimate strength for [45/0/-45/90] _s IM7/K3B laminates with a center hole.
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Figure 5.48. Phase lag measurements for350°F (177°C) fatigue tests at 70% of ultimate strength for
[45/0/-45/9012s IM7/K3B laminates with a center hole.
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Figure 5.49. Normalized dynamic storage modulus measurements for 350°F (177°C) fatigue tests at 80%
of ultimate strength for [45/0/-45/90] 2s IM7/K3B laminates with a center hole.
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Figure 5.50. Phase lag measurements for 350°F (177°C) fatigue tests at 70% of ultimate strength tor
[45/0/-45/9012s IM7/K3B laminates with a center hole.
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Figure 5.51. Penetrant-enhanced radiographs of unnotched [45/0/-45/9012s laminates of IM7/K3B

fatigued at room temperature at 65% of ultimate tensile strength after 10000 cycles (left) and 20000 cycles
(right).
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Figure 5.52. Penetrant-enhanced radiograph of an unnotched [45/0/-45/9012s laminate of IM7/K3B

fatigued at room temperature at 70% of ultimate tensile strength after 10000 cycles.
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Radiographs of the unnotched specimens fatigued at 350°F (177°C) at 65% and 70% of ultimate tensile

strength are shown in Figure 5.53 and Figure 5.54, respectively. These radiographs show a similar trend

to that from the notched [0/+4512s laminates: as the temperature is increased, the damage modes appear to

remain the same as in the room temperature specimens, although the rate at which the damage develops is

increased.

Now we may consider the radiographs of the notched specimens. Radiographs of the notched specimens

fatigued at room temperature at 70% and 80% of ultimate strength are shown in Figure 5.55 and Figure

5.56, respectively. From the radiographs of the specimens fatigued at 70%, we may see that the damage

development begins with the development of the matrix cracks. After this damage has developed,

delaminations begin to form around the hole. Rather than developing and growing above the hole section

parallel to the loading direction as in the [0/±4512s specimens, this delamination grows in the transverse

direction. In Figure 5.56, we see the beginning of the development of the edge delamination in the

specimen in which the test was stopped after 100000 cycles.

Radiographs of the notched specimens fatigued at 350°F (177°C) at 70% and 80% of ultimate strengths

are shown in Figure 5.57 and Figure 5.58. In the specimen which was stopped after 10000 cycles, we can

see the fully-saturated matrix cracking, the beginning of the delamination around the hole, and the

initiation of the delaminations around the edge. In the specimen which was stopped after 100000 cycles,

we can see that the delamination around the hole has connected with the edge delamination. This can be

seen more clearly in the radiograph of the specimen which was fatigued 38500 cycles at 80% of ultimate

strength (Figure 5.58).
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Figure 5.53. Penetrant-enhanced radiograph of an unnotched [45/0/-45/9012s laminate of IM7/K3B

fatigued at 350°F (177°C) at 65% of ultimate tensile strength after 8160 cycles.
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Figure 5.54. Penetrant-enhanced radiographs of unnotched [45/0/-45/9012s laminates of IM7/K3B

fatigued at 350°F (177°C) at 70% of ultimate tensile strength after 3500 cycles (left) and 5200 cycles
(right).
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Figure 5.55. Penetrant-enhanced radiographs of notched [45/0/-45/9012s laminates of IM7/K3B fatigued
at room temperature at 70% of ultimate tensile strength after 1000 cycles (left), 10000 cycles (center) and
100000 cycles (right).
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Figure5.56. Penetrant-enhanced radiographs of notched [45/0/-45/90]zs laminates of IM7/K3B fatigued

at room temperature at 80% of ultimate tensile strength after 10000 cycles (left) and 100000 cycles
(right).
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Figure 5.57. Penetrant-enhanced radiographs of notched [45/0/-45/9012s laminates of IM7/K3B fatigued

at 350°F (177 °) at 70% of ultimate tensile strength after 10000 cycles (left) and 100000 cycles (right).
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Figure 5.58. Penetrant-enhanced radiograph of an notched [45/0/-45/9012s laminate of IM7/K3B fatigued
350°F (177°C) at 80% of ultimate tensile strength after 38500 cycles.
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5.4.3.4 Residual Strength Measurements

The residual strength values for the Phase III specimens were obtained in two different manners. In thc

case of the specimens in which fatigue failure occurred, the residual strength at the number of cycles at

which failure occurred was taken to be the maximum applied fatigue load. In the case in which the

fatigue tests were interrupted, residual strength tests were conducted in a manner identical to that utilized

in the quasi-static tests. The residual strength results for the unnotched [45/0/-45/9012s laminates are

summarized in Table 5.4. Considering the normal scatter which is expected in fatigue data, these data arc

extremely consistent. In fact, the strength values appear to be monotonically decreasing from their initial

value to the value at which failure occurs. Such is not the case for the notched [45/0/-45/9012s laminates.

The remaining strength results for these specimens are summarized in Table 5.5. The remaining strength

values in this case have a complicated behavior. Such a behavior is not surprising, however, in view of

the complicated damage states which were observed in the radiographs.

5.4.3.5 Residual Strength Predictions

In the case of the unnotched specimens, the prediction of the remaining strength during the fatigue

process is much more straightforward than the predictions made for the notched [0/9014s APC-2 laminates

and the [0/_+4512s IM7/K3B laminates. In this case, it is only necessary to represent the stiffness reduction

of the plies due to the matrix cracking and the delamination. This is accomplished by using the stiffness

reduction measured during the fatigue tests in conjunction with CLT to fit the off-axis stiffness values to

the form given in Equation (4.4). The remaining strength may then be calculated in the manner described

in Chapter 3. The results of such a prediction for the unnotched room temperature specimens are shown

in Figure 5.59. The analysis does seem to do a reasonable job of predicting the remaining strength,

although it does appear that it over-predicts the number of cycles to failure (the point at which the applied

stress equals the remaining strength) at 65% of ultimate strength. Corresponding results for the 350°F

(177°C) tests are shown in Figure 5.60. The agreement for the specimens which were fatigued at 70% of
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Table5.4.Residualstrengthresultsforunnotched[45/0/-45/90]2slaminatesofIM7/K3B.

Specimen
LRC -U- 15

LRC-U-2

LRC-U-5

LRC-U-16

Normalized

Stress Level

65

65

65

65

Test

Temperature
Room

Room

Room

Room

Fatigue Cycles

(Fatigue Failure)
26252 t

34146 t

10000

20000

Residual Strength
93.4 ksi

(644 MPa)

93.4 ksi

(644 MPa)
127 ksi

(876 MPa)

94.0 ksi

(648 MPa)

LRC-U-9 65 350°F (177°C) 10392 t 83.7 ksi

(577 MPa)
LRC-U- 12 65 350°F (177°C) 11370 * 83.7 ksi

(577 MPa)

LRC-U-19 65 350°F (177°C) 5190 t 83.7 ksi

(577 MPa)

LRC-U- 11 65 350°F (177°C) 8160 116 ksi

(800 MPa)
LRC-U-4 70 Room 15412' 101 ksi

(693 MPa)
LRC-U-8 70 Room 21253 + 101 ksi

(693 MPa)
LRC-U-6 70 Room 24770 _ 101 ksi

(693 MPa)
LRC-U- 1 70 Room 10000: 118 ksi

(814 MPa)

LRC-U- 10 70 350°F (177 °C) 6876* 90.1 ksi

(621 MPa)

LRC-U-20 70 350°F (177°C) 6988 _ 90. i ksi

(621 MPa)

LRC-U- 14 70 350°F (177°C) 3500 116 ksi

(798 MPa)

LRC-U- 18 70 350°F (177°C) 5200 105 ksi

(726 MPa)
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Table5.5. Residual strength results for notched [45/0/-45/90] 2s laminates of IM7/K3B.

Specimen
LRC-N -2

Normalized

Stress Level

70

Test

Temperature
Room

Fatigue Cycles

(*Fatigue Failure)
1000

Residual Strength
63.1 ksi

(435 MPa)

LRC-N- 13 70 Room 10000 60.3 ksi

(416 MPa)
LRC-N- 11 70 Room 100000 65.3 ksi

(450 MPa)
LRC-N- 16 70 Room 999993 58.8 ksi

(405 MPa)

LRC-N-6 70 350°F (177°C) 141104 t 41.6 ksi

(287 MPa)

LRC-N-4 70 350°F (177°C) 10000 64.9 ksi

(447 MPa)

LRC-N- 18 70 350°F (177°C) 100000 61.9 ksi

(427 MPa)

LRC-N-5 70 350°F (177°C) 250000 55.2 ksi

(381 MPa)
LRC-N-2 80 Room 537537 t 61.5 ksi

(424 MPa)
LRC-N- 12 80 Room 778246* 61.5 ksi

(424 MPa)
LRC-N-3 80 Room 10000 63.7 ksi

(439 MPa)
LRC-N- 19 80 Room 100000 66.4 ksi

(458 MPa)
LRC-N-8 80 350°F (177°C) 106060 + 47.6 ksi

(328 MPa)

LRC-N-20 80 350°F (177°C) 56022 + 47.6 ksi

(328 MPa)

LRC-N- 10 80 350°F (177°C) 69294 + 47.6 ksi

(328 MPa)

LRC-N- 17 80 350°F (177°C) 38500 60.7 ksi

(419 MPa)
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ultimate strength is excellent, although once again the analysis appears to slightly over-predict the life at

65% of ultimate strength.

In the case of the notched laminates, it had been hoped that the same techniques which had been applied

to the [0/+4512s laminates could be used again. However, this did not prove possible due to the

delaminations which grew perpendicular to the loading directions. As a result of these delaminations, it

was not possible to use the strip strain gages to make accurate strain measurements.
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Figure 5.59. Comparison of predicted and measured remaining strength for unnotched [45/0/-45/90] 2s
specimens fatigued at room temperature.
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6. Summary and Conclusions
The purpose of this chapter is to bring together the results from the previous sections as succinctly as

possible. In order to do so, the organization of this chapter will lbllow along the same lines as that used

for the previous chapters.

6.1 Introduction and Literature Review

6.1.1 Micromechanical Modeling of Tensile Strength

• A number of exact solutions exist for determining the stress state around a penny-shaped crack in a

single, homogenous material under a variety of loading conditions. There are few exact solutions for

the problem of a penny-shaped crack in a heterogeneous material which could be applied directly to a

composite material.

• There are, however, a number of approximate solutions for determining the stress state in a composite

material surrounding a broken fiber. The majority of these solutions are based upon shear-lag type

assumptions.

• Two new models [25, 26] provide approximations of the stress state surrounding broken fibers

without the need for the shear lag assumptions.

• The knowledge of the stress state around broken fibers in a unidirectional composite is necessary for

statistical prediction of the composite tensile strength.

6.1.2 Estimation of Residual Strength and Fatigue Life

• Models used to predict fatigue lives may be divided into three classes: residual strength degradation,

modulus degradation, and damage tolerance approaches [30]. Most life prediction methods for

polymeric composite materials are based upon residual strength degradation approaches.
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It has been suggested [29] that a universal fatigue damage model needs to meet four requirements:

a)

b)

c)

d)

It should explain fatigue phenomena at an applied stress level.

It should explain fatigue phenomena for an overall applied stress range

i) During a cycle at a high applied stress level the material should be more

damaged than that at a low applied stress level.

ii) If it is true that failure occurs at each maximum applied stress level, then the

final damage (damage just before failure) at a low applied stress level should be

larger than that at a high applied stress level.

It should explain multi-stress level fatigue phenomena.

It is desirable to establish the fatigue damage model without an S-N curve.

One of the first cumulative damage approaches based upon remaining strength was presented in [33],

in which the remaining strength of the laminate was assumed to vary linearly with fatigue cycles.

One cumulative damage approach which has achieved a great deal of success [35-38] involves the use

of a "critical element" model along with a nonlinear damage accumulation model.

Accurate attempts to model either the tensile strength or the fatigue life of composite materials should

include the role of the interphase.

6.2 Strength Prediction in Unidirectional Composite Materials

• A exact elasticity solution was developed for a penny-shaped crack in an N-phase composite material.

This solution was used in conjunction with a geometry approximation to estimate the stress

concentrations due to fiber fractures.

• The stress concentrations due to these fiber fractures were then used to estimate the tensile strength of

a unidirectional composite material based upon the model presented in [7].
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Because the exact solution is subject to a number of limitations, an approximate solution [26] was

used to better estimate the stress concentrations due to multiple fiber fractures in a graphite/polymeric

composite.

These stress concentrations were then used to estimate the tensile strength of unidirectional

composites as the matrix stiffness was varied. Such a situation would arise physically if the

temperature were varied.

Predicted tensile strengths were compared to measured strengths for composites containing a number

of different fibers, with reasonable agreement.

Although none of the models specifically included the role of the interphase, it could be readily

included in the stress analysis. However, it any analysis which includes the interphase should also

includes the interphase should also include paths of crack propagation (i.e. whether a fiber fracture

leads to an axial debond, a matrix crack, or neither). Such work is currently underway [62].

6.3 Durability and Damage Tolerance Analysis in Composite
Materials

• An analysis was presented based on the work in [38] for predicting the remaining strength of

composites subjected to cyclic loading conditions.

Modifications were made to the analysis to include the effect of changing stress levels. The

modifications make use of the idea of remaining strength as a damage metric, and the definition of an

equivalent time ("pseudo-time').

• The analysis has been used to predict lifetimes of composite materials subjected to fatigue loads.

These predictions have been compared to experimental data with good agreement.
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6.4 Quasi-Static and Fatigue Behavior of Notched [0/9014s APC-2

• Three different cooling rates were considered (10°C/min, 5°C/min, and l°C/min). These were not

found to have an effect on the composite behavior.

* Specimens were fatigue loaded (10 Hz, R=0.1) at 80% and 87.5% of the ultimate strength. No

fatigue failures occurred within 100000 cycles at these load levels.

Fatigue tests were interrupted for damage analysis and remaining strength tests. The damage

analysis revealed the growth of longitudinal splits around the hole section. It was surmised that the

growth of these splits reduced the stress concentration around the hole to a level at which fatigue

failure would not occur (at least within practical numbers of cycles).

Strip strain gages were used to quantify the changes in stress distribution around the hole. These

measurements were used to approximate the stress state based upon an "effective" hole size along

with reduced stiffness properties based upon the solution in [58]. Phenomenological models were

used to represent the changes in the effective hole size and stiffness properties.

• The approximate stress state was used in the cumulative damage model to estimate the remaining

strength of the composites. These values were compared to the experimental data.

Summary and Conclusions

6.5 Room Temperature and Elevated Temperature
Characterization of IM7/K3B

s Characterization tests were conducted at room temperature and 350°F (177°C). These tests included

[0112 tension tests, [90112 tension tests, and [±4513s tension tests to determine baseline mechanical

properties. One interesting finding was that the value for E11 measured at 350°F (177°C) was greater

than that measured at room temperature.
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Fatiguetests(R=0.1)wereconductedatvariousstresslevelsonunnotched[45/0/-45/9012s,notched

[45/0/-45/90]23, and notched [0/±4512s laminates at the two temperatures.

Radiographs of the specimens indicated that the damage modes present in the materials at the two

temperatures were the same. However, the rate of damage development and growth was greater at the

elevated temperature.

Strip gage measurements were made of the strain distributions around the hole in damaged and

undamaged laminates for the [0/-+45]23 stacking sequence. An effective hole size was estimated based

upon these measurements and reduced stiffness properties.

Phenomenological models were used to represent the stiffness reduction (for notched and unnotched

laminates) as well as the effective hole size (for [0/___45]2,laminates).

Residual strength measurements were made at the two temperatures. These values were compared to

predicted values for the notched [0/-+4512s specimens and the unnotched [45/0/-45/9012s specimens

based upon the cumulative damage model. These results were compared to the experimental data.

No prediction were made for the notched [45/0/-45/9012_ because the delaminations made

measurements of the strain gradients around the hole using the strip strain gages impossible.

6.6 Recommendations

A great deal of work still remains to be done in these areas.

consideration are the following:

Among areas that I believe merit

Considering the role of the interphase in the path of crack propagation around fiber fractures in

composite materials. This would also require including the effect of axial debonds and matrix cracks

in the stress analysis used for strength predictions.
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A number of the relations used to represent the material behavior were phenomenological rather than

mechanistic. As such, their applicability is limited to the special cases for which they were

developed.

• The fatigue tests demonstrated that the rate of damage development is greater at the higher

temperatures. Now an explanation is needed as to why this is the case.
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